Similarity in loudness and distortion product otoacoustic emission input/output functions: Implications for an objective hearing aid adjustment

2004 ◽  
Vol 115 (6) ◽  
pp. 3081-3091 ◽  
Author(s):  
Jörg Müller ◽  
Thomas Janssen
2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Nur Baizura Salahuddin ◽  
Sarah Rahmat

Introduction: Schroeder-phase masking has been proven to be more sensitive than pure tone audiometry in detecting changes in cochlear function. Schroeder harmonic complexes with different phases have been observed to excite basilar membranes differently and give different masking abilities (‘phase effect’) when used as maskers. Previous theory suggested that phase effect was contributed by cochlear non-linearity of outer hair cells (OHC); however the theory was derived from behavioral observation alone. Therefore, this study aims to further investigate the cochlear non-linearity involvement in phase effect mechanism by measuring the Schroeder phase effect together with another electrophysiological test that measures the cochlear non-linearity function, i.e. Distortion Product Otoacoustic Emission (DPOAE). Methods: Twelve normal hearing and four sensorineural hearing loss subjects were recruited. Schroeder phase masking test was conducted and phase effect (using 75 dB A masker) at 1kHz and 2 kHz was measured. DPOAE was recorded at multiple intensities (45-75 dB SPL) for 1 kHz and 2 kHz, and slope of DPOAE input output function was measured. Correlation analysis was performed to find correlation between phase effect and slope of DPOAE input output function. Results: Result showed no significant correlation (p > 0.05) between phase effect and slope of DPOAE input output function. Conclusions: This findings suggest that Schroeder-phase effect may not be/ may not only be contributed by OHC’s cochlear non-linearity. This finding opens the possibility of other auditory functions’ involvement in phase effect mechanism, and contribute to better understanding towards auditory perceptions.


2013 ◽  
Vol 134 (1) ◽  
pp. 369-383 ◽  
Author(s):  
Daniel M. Rasetshwane ◽  
Stephen T. Neely ◽  
Judy G. Kopun ◽  
Michael P. Gorga

2014 ◽  
Vol 25 (08) ◽  
pp. 746-759 ◽  
Author(s):  
Shaum P. Bhagat

Background: Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. Purpose: The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. Research Design: A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Study Sample: Normal-hearing adults (n = 16) aged 22–42 yr were recruited. Data Collection and Analysis: DPOAE I/O functions (L 2 = 45–70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. Results: A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. Conclusions: The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1–2 kHz frequency range.


2001 ◽  
Vol 110 (6) ◽  
pp. 3119-3131 ◽  
Author(s):  
Patricia A. Dorn ◽  
Dawn Konrad-Martin ◽  
Stephen T. Neely ◽  
Douglas H. Keefe ◽  
Emily Cyr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document