Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave

2005 ◽  
Vol 117 (4) ◽  
pp. 1839-1849 ◽  
Author(s):  
Michael W. Thompson ◽  
Anthony A. Atchley ◽  
Michael J. Maccarone
Author(s):  
Bakhtier Farouk ◽  
Murat K. Aktas

Formation of vortical flow structures in a rectangular enclosure due to acoustic streaming is investigated numerically. The oscillatory flow field in the enclosure is created by the vibration of a vertical side wall of the enclosure. The frequency of the wall vibration is chosen such that a standing wave forms in the enclosure. The interaction of this standing wave with the horizontal solid walls leads to the production of Rayleigh type acoustic streaming flow patterns in the enclosure. All four walls of the enclosure considered are thermally insulated. The fully compressible form of the Navier-Stokes equations is considered and an explicit time-marching algorithm is used to explicitly track the acoustic waves. Numerical solutions are obtained by employing a highly accurate flux corrected transport (FCT) algorithm for the convection terms. A time-splitting technique is used to couple the viscous and diffusion terms of the full Navier-Stokes equations. Non-uniform grid structure is employed in the computations. The simulation of the primary oscillatory flow and the secondary (steady) streaming flows in the enclosure is performed. Streaming flow patterns are obtained by time averaging the primary oscillatory flow velocity distributions. The effect of the amount of wall displacement on the formation of the oscillatory flow field and the streaming structures are studied. Computations indicate that the nonlinearity of the acoustic field increases with increasing amount of the vibration amplitude. The form and the strength of the secondary flow associated with the oscillatory flow field and viscous effects are found to be strongly correlated to the maximum displacement of the vibrating wall. Total number of acoustic streaming cells per wavelength is also determined by the strength and the level of the nonlinearity of the sound field in the resonator.


2017 ◽  
Vol 832 ◽  
pp. 5-40 ◽  
Author(s):  
P. S. Contreras ◽  
M. F. M. Speetjens ◽  
H. J. H. Clercx

The present study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as the archetypal configuration for natural-convection flows in which (contrary to the well-known Rayleigh–Bénard flow) gravity is perpendicular (instead of parallel) to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows, despite its relevance to observed flow phenomena as well as scalar transport, motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure and associated transport properties of the global streamline pattern (‘Lagrangian flow topology’) by both theoretical and computational analyses. The Grashof number $Gr$ is the principal control parameter for the flow topology: limit $Gr=0$ yields a trivial state of closed streamlines; $Gr>0$ induces symmetry breaking by fluid inertia and buoyancy and thus causes formation of toroidal coherent structures (‘primary tori’) embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ‘smaller’ $Gr$ and gives behaviour that is dynamically entirely analogous to 3D lid-driven cavity flows. Buoyancy-induced bifurcation of the flow topology occurs for ‘larger’ $Gr$ and underlies the emergence of ‘secondary rolls’ observed in the literature and to date unreported secondary tori for ‘larger’ Prandtl numbers $Pr$. Key to these dynamics are stagnation points and corresponding heteroclinic manifold interactions.


Sign in / Sign up

Export Citation Format

Share Document