optical measurement
Recently Published Documents


TOTAL DOCUMENTS

2219
(FIVE YEARS 361)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
J. Lovecchio ◽  
V. Betti ◽  
M. Cortesi ◽  
E. Ravagli ◽  
S. Severi ◽  
...  

Monitoring bone tissue engineered (TEed) constructs during their maturation is important to ensure the quality of applied protocols. Several destructive, mainly histochemical, methods are conventionally used to this aim, requiring the sacrifice of the investigated samples. This implies (i) to plan several scaffold replicates, (ii) expensive and time consuming procedures and (iii) to infer the maturity level of a given tissue construct from a cognate replica. To solve these issues, non-destructive techniques such as light spectroscopy-based methods have been reported to be useful. Here, a miniaturized and inexpensive custom-made spectrometer device is proposed to enable the non-destructive analysis of hydrogel scaffolds. Testing involved samples with a differential amount of calcium salt. When compared to a reference standard device, this custom-made spectrometer demonstrates the ability to perform measurements without requiring elaborate sample preparation and/or a complex instrumentation. This preliminary study shows the feasibility of light spectroscopy-based methods as useful for the non-destructive analysis of TEed constructs. Based on these results, this custom-made spectrometer device appears as a useful option to perform real-time/in-line analysis. Finally, this device can be considered as a component that can be easily integrated on board of recently prototyped bioreactor systems, for the monitoring of TEed constructs during their conditioning.


2022 ◽  
Vol 43 (1) ◽  
pp. 012401
Author(s):  
Quan Pan ◽  
Xiongshi Luo

Abstract This work presents a high-gain broadband inverter-based cascode transimpedance amplifier fabricated in a 65-nm CMOS process. Multiple bandwidth enhancement techniques, including input bonding wire, input series on-chip inductive peaking and negative capacitance compensation, are adopted to overcome the large off-chip photodiode capacitive loading and the miller capacitance of the input device, achieving an overall bandwidth enhancement ratio of 8.5. The electrical measurement shows TIA achieves 58 dBΩ up to 12.7 GHz with a 180-fF off-chip photodetector. The optical measurement demonstrates a clear open eye of 20 Gb/s. The TIA dissipates 4 mW from a 1.2-V supply voltage.


2022 ◽  
Vol 70 (1) ◽  
pp. 90-101
Author(s):  
Michael Heizmann ◽  
Alexander Braun ◽  
Markus Glitzner ◽  
Matthias Günther ◽  
Günther Hasna ◽  
...  

Abstract Finding and implementing a suitable machine learning (ML) solution to a task at hand has several facets. The technical side of ML has widely been discussed in detail, see, e. g., (Heizmann, M., A. Braun, M. Hüttel, C. Klüver, E. Marquardt, M. Overdick and M. Ulrich. 2020. Artificial Intelligence with Neural Networks in Optical Measurement and Inspection Systems. at – Automatisierungstechnik 68(6): 477–487). This contribution focusses on the industrial implementation issues of ML projects, particularly for machine vision (MV) tasks. Especially in small and medium-sized enterprises (SMEs), resources cannot be activated at will in order to use a new technology like ML. We take this into account by, on the one hand, helping to realistically evaluate the opportunities and challenges involved in implementing ML projects for a given task. On the other hand, we consider not only technical aspects, but also organizational, social and customer-related ones. It is discussed which know-how a company itself has to bring into an ML project and which tasks can also be performed by service providers. Here, it becomes clear that ML techniques can be used at different levels of detail. The question of “make or buy” is therefore also an entrepreneurial one when introducing ML into one’s own products and processes, and must be answered with a view to one’s own possibilities and structures.


2022 ◽  
Vol 275 ◽  
pp. 108361
Author(s):  
Xu Ma ◽  
Tiejun Wang ◽  
Lei Lu ◽  
Huaguo Huang ◽  
Jiangli Ding ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 271
Author(s):  
Vasyl V. Kukharchuk ◽  
Sergii V. Pavlov ◽  
Volodymyr S. Holodiuk ◽  
Valery E. Kryvonosov ◽  
Krzysztof Skorupski ◽  
...  

The purpose of this work is the authors’ attempt to identify the main phases of information transformation in measurement channels on the example of an optical measurement channel with microprocessor control. The authors include such phases: hardware implementation and analytical representation of an optical sensor`s converting functions and a current-to-voltage converter; based on the methods of experimental computer science, the converting functions and sensitivity are deduced, analytical dependences for estimation of a range of measurement are obtained. It is shown that the choice of information transmission type in the microprocessor measuring channel significantly affects the speed of the measuring channel. Based on the uncertainty in the form of entropy before and after measurements, the amount of information for measuring channels with optoelectronic sensors is estimated. The application of the results obtained in the work allows even at the design stage of physical and mathematical modeling to assess the basic static metrological characteristics of measuring channels, aimed at reducing the stage of development and debugging of hardware and software and standardization of their metrological characteristics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonathan S. Baillie ◽  
Matthew R. Stoyek ◽  
T. Alexander Quinn

Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins (“reporters” and “actuators”), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.


2021 ◽  
Author(s):  
Yu Rong ◽  
Panagiotis C. Theofanopoulos ◽  
Georgios C. Trichopoulos ◽  
Daniel W. Bliss

Abstract This study presents findings at Terahertz (THz) frequency band for non-contact cardiac sensing application. For the first time, cardiac pulse information is simultaneously extracted using THz waves based on the two established principles in electronics and optics. The first fundamental principle is micro-Doppler (mD) motion effect, initially introduced in coherent laser radar system 1, 2 and first experimentally demonstrated for vital sign detection 3. This motion based method, primarily using coherent phase information from the radar receiver, has been widely exploited in microwave frequency bands and has recently found popularity in millimeter waves (mmWave). The second fundamental principle is reflectance based optical measurement using infrared or visible light. The variation in the light reflection is proportional to the volumetric change of the heart, often referred as photoplethysmography (PPG). PPG has been a popular technology for pulse diagnosis. Recently it has been widely incorporated into various smart wearables for long-term monitoring, such fitness training and sleep monitoring. Herein, the concept of Terahertz-Wave-Plethysmography (TPG) is introduced, which detects blood volume changes in the upper dermis tissue layer by measuring the reflectance of THz waves, similar to the existing remote PPG (rPPG) principle 4. The TPG principle is justified by scientific deduction, electromagnetic wave (EM) simulations and carefully designed experimental demonstrations. Additionally, pulse measurements from various peripheral body parts of interest (BOI), palm, inner elbow, temple, fingertip and forehead, are demonstrated using a wideband THz sensing system developed by Terahertz Electronics Lab at Arizona State University (ASU), Tempe. Among the BOIs under test, it is found that the measurements from forehead BOI gives the best accuracy with mean heart rate (HR) estimation error 1.51 beats per minute (BPM) and stand deviation (std) 1.08 BPM. The results validate the feasibility of radar based plethysmography for direct pulse monitoring. Finally, a comparative study on pulse sensitivity in TPG and rPPG is conducted. The results indicate that the TPG contains more pulsatile from the forehead BOI than that in the rPPG signals and thus generate better heart rate (HR) estimation statistic in the form of empirical cumulative distribution function (CDF) of HR estimation error.


Sign in / Sign up

Export Citation Format

Share Document