Detection of “Mach Wave” Radiation of a Supersonic Jet

1974 ◽  
Vol 55 (2) ◽  
pp. 400-400
Author(s):  
R. Schlinker ◽  
J. Laufer
2019 ◽  
Vol 145 (1) ◽  
pp. EL122-EL128 ◽  
Author(s):  
Masahito Akamine ◽  
Koji Okamoto ◽  
Susumu Teramoto ◽  
Seiji Tsutsumi

AIAA Journal ◽  
10.2514/2.15 ◽  
1997 ◽  
Vol 35 (10) ◽  
pp. 1574-1580 ◽  
Author(s):  
Brian E. Mitchell ◽  
Sanjiva K. Lele ◽  
Parviz Moin

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1574-1580
Author(s):  
Brian E. Mitchell ◽  
Sanjiva K. Lele ◽  
Parviz Moin

Author(s):  
Soshi Kawai ◽  
Seiji Tsutsumi ◽  
Ryoji Takaki ◽  
Kozo Fujii

Aeroacoustic mechanisms of an axisymmetric over-expanded supersonic jet impinging on a flat plate with and without hole are numerically investigated. High-order weighted compact nonlinear scheme is used to simulate the unsteady flow including shock waves and sound radiation in the near field of the jet. Analyses of unsteady flowfield and related near-sound field reasonably identify three major noise generation mechanisms, that is, noises from Mach wave, shock cell-shear layer interaction and small fluctuations of jet shear layer. Especially, intense noise radiation in the form of Mach waves and its reflection at the plate predominates the noises from the other two finer sources. The simulated distributions of sound source power and its frequency along the jet axis qualitatively well coincide with typical experimental data used in NASA SP-8072. Similar sound pressure spectrum shape is obtained both the cases of flat plate with and without hole, but the case of without hole shows higher SPL by several dB than that of with hole due to the stronger Mach wave radiation. Aeroacoustic flowfield is drastically affected by the Reynolds number because the jet shear layer instability directly causes the strength of acoustic waves.


2001 ◽  
Vol 13 (9) ◽  
pp. S3-S3 ◽  
Author(s):  
R. Darke ◽  
J. B. Freund
Keyword(s):  

2011 ◽  
Vol 681 ◽  
pp. 261-292 ◽  
Author(s):  
M. KEARNEY-FISCHER ◽  
J.-H. KIM ◽  
M. SAMIMY

Mach wave radiation is one of the better understood sources of jet noise. However, the exact conditions of its onset are difficult to determine and the literature to date typically explores Mach wave radiation well above its onset conditions. In order to determine the conditions for the onset of Mach wave radiation and to explore its behaviour during onset and beyond, three ideally expanded jets with Mach numbers Mj = 0.9, 1.3 and 1.65 and stagnation temperature ratios ranging over To/T∞ = 1.0–2.5 (acoustic Mach number 0.83–2.10) were used. Data are collected using a far-field microphone array, schlieren imaging and streamwise two-component particle image velocimetry. Using arc filament plasma actuators to force the jet provides an unprecedented tool for detailed examination of Mach wave radiation. The response of the jet to various forcing parameters (combinations of one azimuthal mode m = 0, 1 and 3 and one Strouhal number StDF = 0.09–3.0) is explored. Phase-averaged schlieren images clearly show the onset and evolution of Mach wave radiation in response to both changes in the jet operating conditions and forcing parameters. It is observed that Mach wave radiation is initiated as a coalescing of the near-field hydrodynamic pressure fluctuations in the immediate vicinity of the large-scale structures. As the jet exit velocity increases, the hydrodynamic pressure fluctuations coalesce, first into a curved wavefront, then flatten into the conical wavefronts commonly associated with Mach wave radiation. The results show that the largest and most coherent structures (e.g. forcing with m = 0 and StDF ~ 0.3) produce the strongest Mach wave radiation. Conversely, Mach wave radiation is weakest when the structures are the least coherent (e.g. forcing with m = 3 and StDF > 1.5).


Sign in / Sign up

Export Citation Format

Share Document