hydrodynamic pressure
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 166)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 321 ◽  
pp. 126344
Author(s):  
Zhennan Li ◽  
Aiqin Shen ◽  
Yiwei Liu ◽  
Yinchuan Guo ◽  
Panfei Zheng

Tribologia ◽  
2021 ◽  
Vol 297 (3) ◽  
pp. 35-44
Author(s):  
Yuliia Tarasevych ◽  
Nataliia SOVENKO

Face throttles are a necessary functional element of non-contact face seals and automatic balancing devices of centrifugal pumps of different constructions. To calculate the hydrodynamic forces and moments acting on the rotor and fluid flow through the automatic balancing device, it is necessary to know the pressure distribution in the cylindrical and face throttle when considering all important factors which predetermine fluid flow. The face throttle surfaces are moving, which leads to unsteady fluid flow. The movement of the walls of the face throttle causes an additional circumferential and radial flow, which subsequently leads to the additional hydrodynamic pressure components. The paper analyses viscous incompressible fluid flow in the face throttle of an automatic balancing device taking into account the axial and angular displacements of throttle’s surfaces and the inertia component of the fluid. The effect of local hydraulic losses as well as random changes in the coefficients of local hydraulic resistance at the inlet and outlet of the throttle is analysed.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 45
Author(s):  
Maolin Zhou ◽  
Xin Li ◽  
Jianmin Zhang ◽  
Weilin Xu

Hydrodynamic pressure exerted on a plunge pool slab by jet impingement is of high interest in high dam projects. The present study experimentally investigated the characteristics of pressure induced by a jet through a constant width flip bucket (CFB) and a slit flip bucket (SFB). A pressurized plane pipe was employed in the flume experiments to control the inlet velocities in the flip buckets. A concise method is proposed to predict the mean dynamic pressure field. Its implementation is summarized as follows: First, the position of the pressure field is determined by the trajectories of free jets, and to calculate its trajectories, an equation based on parabolic trajectory theory is used; second, the maximum mean dynamic pressure is obtained through dimensional analysis, and then the pressure field is established by applying the law of Gaussian distribution. Those steps are integrated into a concise computing procedure by using some easy-to-obtain parameters. Some key parameters, such as takeoff velocity coefficient, takeoff angle coefficient, and the parameter k2, are also investigated in this paper. The formulas of these coefficients are obtained by fitting the experimental data. Using the proposed method, the easy-to-obtain geometric parameters and initial hydraulic conditions can be used to calculate the maximum mean dynamic pressure on the slab. A comparison between experimental data and calculated results confirmed the practicability of this model. These research results provide a reference for hydraulic applications.


2021 ◽  
Author(s):  
Erik Hansen ◽  
Altay Kaçan ◽  
Bettina Frohnapfel ◽  
Andrea Codrignani

Abstract Many engineering applications rely on lubricated gaps where the hydrodynamic pressure distribution is influenced by cavitation phenomena and elastic deformations. To obtain details about the conditions within the lubricated gap, solvers are required that can model cavitation and elastic deformation effects efficiently when a large amount of discretization cells is employed. The presented unsteady EHL-FBNS solver can compute the solution of such large problems that require the consideration of both mass-conserving cavitation and elastic deformation. The execution time of the presented algorithm scales almost with N log(N) where N is the number of computational grid points. A detailed description of the algorithm and the discretized equations is presented. The MATLAB© code is provided in the supplements along with a maintained version on GitHub to encourage its usage and further development. The output of the solver is compared to and validated with simulated and experimental results from the literature to provide a detailed comparison of different discretization schemes of the Couette term in presence of gap height discontinuities. As a final result, the most favourable scheme is identified for the unsteady study of surface textures in ball-on-disc tribometers under severe EHL conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fuxi Liu ◽  
Zhanlong Li ◽  
Chunjie Yang ◽  
Hongbao Wu ◽  
Huazhu Yin ◽  
...  

The hydrodynamic lubrication performance of partially textured gas parallel slider bearings with orientation ellipse dimples is investigated in this paper. By using the multigrid finite element method, the pressure distribution between a partially textured slider and a smooth slider is obtained. The geometric parameters of the ellipse dimples are optimized to maximize the average pressure under a given sliding speed. The numerical results show that geometric parameters such as orientation angle, depth, slender ratio, and area density have an important impact on hydrodynamic pressure. Besides, the effect of textured fraction on hydrodynamic pressure is investigated under a given sliding speed. It is observed that the optimum textured fraction for maximizing the average pressure is dependent on the sliding speed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zheng Li ◽  
Kunping Chen ◽  
Ziqiang Li ◽  
Weiwei Huang ◽  
Xinsheng Wang

In China, the first tunnel was built in accordance with the 30-ton heavy-haul railway standard. Based on the change in water and soil pressure obtained from long-term on-site monitoring, the cavity mechanism of the surrounding rock at the bottom of a heavy-haul railway tunnel under rich water conditions was explored in this study. The cavity characteristics and degradation depth of the three types of surrounding rock under different axial loads and hydrodynamic pressures were analyzed through laboratory tests. The structural defects at the bottom of the tunnel and local cracks in the surrounding rock were determined to provide a flow channel for groundwater. The dynamic load of heavy-haul trains causes groundwater to exert high hydrodynamic pressure on the fine cracks. The continuous erosion of the bottom surrounding rock leads to a gradual loss of surrounding rock particles, which would further exacerbate with time. The cohesive soil surrounding rock is noticeably affected by the combined action of heavy-haul load and groundwater in the three types of surrounding rock, and the surrounding rock cavity is characterized by overall hanging. In the simulation experiment, the particle loss of the surrounding rock reached 1,445 g, which is 24.2% higher than that of the pebble soil surrounding rock and 40.8% higher than that of sandy soil surrounding rock. The findings of this study could be helpful for developing methods for defect prediction and treatment of heavy-haul railway tunnels.


2021 ◽  
Vol 130 ◽  
pp. 105747
Author(s):  
Haobo Fan ◽  
Zhengguo Zhu ◽  
Yuxiang Song ◽  
Shiyu Zhang ◽  
Yongquan Zhu ◽  
...  

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Robert Chahine ◽  
Kai Schneider ◽  
Wouter J.T. Bos

We study the influence of the shape of the plasma container on the dynamics of the reversed-field pinch (RFP). The geometries we consider are periodic cylinders with elliptical and circular-shaped cross-sections. Numerical simulations of fully nonlinear viscoresistive magnetohydrodynamics are carried out to illustrate how the plasma dynamics is affected by shaping. It is shown that independent of the plasma shape, the quantity $\beta$ , comparing the hydrodynamic pressure to the magnetic pressure, decreases for increasing values of the Lundquist number, but the pressure gradient fluctuations remain roughly constant, when compared to the Lorentz force. Different elliptical shapes of the cross-section of the domain lead to the excitation of different toroidal (or axial) magnetic and dynamic modes. Furthermore, it is found that in a geometry with circular cross-section, a significant local poloidal angular momentum is observed, absent in the geometries with elliptical cross-section. Because the confinement is dominantly determined by plasma movement, and the dynamics of the velocity and magnetic field are modified by the modification of the geometry, shaping can thus affect the performance of RFP devices.


Author(s):  
Thomas Myrdek ◽  
Michael Stapels ◽  
Werner Kunz

Ionic Liquids are promising candidates for next generation green lubricants. We have synthesized 39 Tetraalkylammonium Alkyl Ether Carboxylate Ionic Liquids and tested them for their lubricant capabilities. We measured friction coefficient to assess the transition from the boundary to the hydrodynamic lubrication, the hydrodynamic area and the minimum friction value. Some Ionic Liquids are capable of forming a hydrodynamic layer fully separating two specimens. Compounds with short C-chain of the cationic part show poor tribological behaviour. Similarly, increasing the PO-degree of the anionic part lowers the lubrication power. An increase of the C-chain length improves the tribological behaviour, i.e. the minimum friction value becomes lower. This is due to the formation of a uniform tribolayer of the long-chain carboxylic acids. Higher viscosity of the Ionic Liquids results in low friction coefficients and the development of a hydrodynamic layer. This is due to a strong hydrodynamic pressure, which is formed by the more viscous compound. Addition of small amounts of Ionic Liquids to low performance oils increases their capability to from tribolayers and thus improves their lubricant capability.


Sign in / Sign up

Export Citation Format

Share Document