Low‐frequency rolloff in the response of shallow‐water channels

1986 ◽  
Vol 79 (1) ◽  
pp. 71-75 ◽  
Author(s):  
P. W. Smith
1987 ◽  
Vol 33 (114) ◽  
pp. 239-242
Author(s):  
M. E. R. Walford

AbstractWe discuss the suggestion that small underwater transmitters might be used to illuminate the interior of major englacial water channels with radio waves. Once launched, the radio waves would naturally tend to be guided along the channels until attenuated by absorption and by radiative loss. Receivers placed within the channels or at the glacier surface could be used to detect the signals. They would provide valuable information about the connectivity of the water system. The electrical conductivity of the water is of crucial importance. A surface stream on Storglaciären, in Sweden, was found, using a low-frequency technique, to have a conductivity of approximately 4 × 10−4 S m−1. Although this is several hundred times higher than the conductivity of the surrounding glacier ice, the contrast is not sufficient to permit us simply to use electrical conductivity measurements to establish the connectivity of englacial water channels. However, the water conductivity is sufficiently small that, under favourable circumstances, radio signals should be detectable after travelling as much as a few hundred metres along an englacial water channel. In a preliminary field experiment, we demonstrated semi quantitatively that radio waves do indeed propagate as expected, at least in surface streams. We conclude that under-water radio transmitters could be of real practical value in the study of the englacial water system, provided that sufficiently robust devices can be constructed. In a subglacial channel, however, we expect the radio range would be much smaller, the environment much harsher, and the technique of less practical value.


2004 ◽  
Vol 50 (1) ◽  
pp. 37-45 ◽  
Author(s):  
V. A. Grigor’ev ◽  
V. M. Kuz’kin ◽  
B. G. Petnikov
Keyword(s):  

1988 ◽  
pp. 273-280
Author(s):  
Henrik Schmidt ◽  
Tuncay Akal ◽  
W. A. Kuperman

2012 ◽  
Vol 30 (5) ◽  
pp. 849-855 ◽  
Author(s):  
C. T. Duba ◽  
J. F. McKenzie

Abstract. Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude) Rossby wave on a β-plane is a circle in wave number (ky,kx) space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f), combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward) group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x) variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.


2007 ◽  
Vol 122 (5) ◽  
pp. 3005
Author(s):  
Jon M. Collis ◽  
Timothy F. Duda ◽  
James F. Lynch ◽  
Arthur E. Newhall ◽  
Keith von der Heydt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document