wave normal
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 26)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Lunjin Chen ◽  
Xiao-Jia Zhang ◽  
Anton Artemyev ◽  
Liheng Zheng ◽  
Zhiyang Xia ◽  
...  

Microbursts, short-lived but intense electron precipitation observed by low-Earth-orbiting satellites, may contribute significantly to the losses of energetic electrons in the outer radiation belt. Their origin is likely due to whistler mode chorus waves, as evidenced by a strong overlap in spatial correlation of the two. Despite previous efforts on modeling bursty electron precipitation induced by chorus waves, most, if not all, rely on the assumption that chorus waves are ducted along the field line with zero wave normal angle. Such ducting is limited to cases when fine-scale plasma density irregularities are present. In contrast, chorus waves propagate in a nonducted way in plasmas with smoothly varying density, allowing wave normals to gradually refract away from the magnetic field line. In this study, the interaction of ducted and nonducted chorus waves with energetic electrons is investigated using test particle simulation. Substantial differences in electron transport are found between the two different scenarios, and resultant electron precipitation patterns are compared. Such a comparison is valuable for interpreting low Earth-orbiting satellite observations of electron flux variation in response to the interaction with magnetospheric chorus waves.


2021 ◽  
Vol 9 ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
G. B. Hospodarsky ◽  
...  

We study the propagation and attenuation of lightning-generated whistler (LGW) waves in near-Earth space (L ≤ 3) through the statistical study of three specific quantities extracted from data recorded by NASA’s Van Allen Probes mission, from 2012 to 2019: the LGW electric and magnetic power attenuation with respect to distance from a given lightning stroke, the LGW wave normal angle in space, and the frequency-integrated LGW refractive index. We find that LGW electric field wave power decays with distance mostly quadratically in space, with a power varying between -1 and -2, while the magnetic field wave power decays mostly linearly in space, with a power varying between 0 and -1. At night only, the electric wave power decays as a quadratic law and the magnetic power as a linear law, which is consistent with electric and magnetic ground measurements. Complexity of the dependence of the various quantities is maximal at the lowest L-shells (L < 1.5) and around noon, for which LGW are the rarest in Van Allen Probes measurements. In-space near-equatorial LGW wave normal angle statistics are shown for the first time with respect to magnetic local time (MLT), L-shell (L), geographic longitude, and season. A distribution of predominantly electrostatic waves is peaked at large wave normal angle. Conversely, the distribution of electromagnetic waves with large magnetic component and small electric component is peaked at small wave normal angle. Outside these limits, we show that, as the LGW electric power increases, the LGW wave normal angle increases. But, as the LGW magnetic power increases, the LGW wave normal angle distribution becomes peaked at small wave normal angle with a secondary peak at large wave normal angle. The LGW mean wave-normal angle computed over the whole data set is 41.6° with a ∼24° standard deviation. There is a strong MLT-dependence, with the wave normal angle smaller for daytime (34.4° on average at day and 46.7° at night). There is an absence of strong seasonal and continental dependences of the wave-normal angle. The statistics of the LGW refractive index show a mean LGW refractive index is 32 with a standard deviation of ∼26. There is a strong MLT-dependence, with larger refractive index for daytime 36) than for nighttime (28). Smaller refractive index is found during Northern hemisphere summer for L-shells above 1.8, which is inconsistent with Chapman ionization theory and consistent with the so-called winter/seasonal anomaly. Local minima of the mean refractive index are observed over the three continents. Cross-correlation of these wave parameters in fixed (MLT, L) bins shows that the wave normal angle and refractive index are anti-correlated; large (small) wave normal angles correspond with small (large) refractive indexes. High power attenuation during LGW propagation from the lightning source to the spacecraft is correlated with large refractive index and anti-correlated with small wave normal angle. Correlation and anti-correlation show a smooth and continuous path from one regime (i.e. large wave normal angle, small refractive index, low attenuation) to its opposite (i.e. small wave normal angle, large refractive index, large attenuation), supporting consistency of the results.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
John C. Foster ◽  
Philip J. Erickson ◽  
Yoshiharu Omura

AbstractVan Allen Probes in situ observations are used to examine detailed subpacket structure observed in strong VLF (very low frequency) rising-tone chorus elements observed at the time of a rapid MeV electron energization in the inner magnetosphere. Analysis of the frequency gap between lower and upper chorus-band waves identifies fceEQ, the electron gyrofrequency in the equatorial wave generation region. Initial subpackets in these strong chorus rising-tone elements begin at a frequency near 1/4 fceEQ and exhibit smooth gradual frequency increase across their > 10 ms temporal duration. A second much stronger subpacket is seen at frequencies around the local value of 1/4 fce with small wave normal angle (< 10°) and steeply rising df/dt. Smooth frequency and phase variation across and between the initial subpackets support continuous phase trapping of resonant electrons and increased potential for MeV electron acceleration. The total energy gain for individual seed electrons with energies between 100 keV and 3 MeV ranges between 2 and 15%, in their nonlinear interaction with a single chorus element.


2021 ◽  
Author(s):  
Na Dong ◽  
Dong Jun

Abstract This paper analyzes the problems and contradictions that occur when the traditional special theory of relativity which uses the speed of light in a vacuum as an invariant constant, studies the propagation of light in media. These problems are re-examined and discussed with the special theory of relativity of variable speed of light. The transformation relationship of the characteristic quantities describing light wave frequency ν, phase velocity w and the direction angle α of the wave normal between the two inertial coordinate systems in vacuum S and in medium S' were derived; combining the transformation of the light ray speed u which describes light granular motion, the de Broglie wave-particle velocity relationship in the vacuum u w = c2 is νextended to the medium to become u' w' = c'2. Corrected the approach of the traditional special theory of relativity when dealing with these problems, in which the transformation from the space-time coordinates to the relevant physical quantity is limited to the half-sided transformation of the media into the vacuum (not two sided transformation), so that the resulting contradictions and problems are all solved. Optical experiments that support the traditional special theory of relativity, such as the Fizeau experiment and the Michelson-Morley experiment, not only still support and agree with the generalized special theory of relativity with variable speed of light, but also obtain a more correct and satisfactory interpretation from it.


2021 ◽  
Author(s):  
Sergio Toledo-Redondo ◽  
Justin H. Lee ◽  
Sarah K. Vines ◽  
Drew L. Turner ◽  
Robert C. Allen ◽  
...  

&lt;p&gt;We report observations of the ion dynamics inside an Alfven branch wave that propagates near the reconnecting dayside magnetopause. The measured frequency, wave normal angle and polarization are within 1% with the predictions of a dispersion solver, and indicate that the wave is an electromagnetic ion cyclotron wave with very oblique wave vector. The magnetospheric plasma contains hot protons (keV), cold protons (eV), plus some heavy ions. The cold protons follow the magnetic field fluctuations and remain frozen-in, while the hot protons are at the limit of magnetization.&lt;/p&gt;&lt;p&gt;The cold proton velocity fluctuations contribute to balance the Hall term in Ohm's law, allowing the wave polarization to be highly-elliptical and right-handed, a necessary condition for propagation at oblique wave normal angles. The dispersion solver indicates that increasing the cold proton density facilitates generation and propagation of these waves at oblique angles, as it occurs for the observed wave.&lt;/p&gt;


2021 ◽  
Author(s):  
Kun Zhang ◽  
Seth Dorfman ◽  
Urs Ganse ◽  
Lucile Turc ◽  
Chen Shi

&lt;p&gt;Energetic ions reflected and accelerated by the Earth&amp;#8217;s bow shock travel back into the solar wind, forming the ion foreshock, and generate ultralow frequency (ULF) waves. Such ULF waves have been extensively studied over the past few decades using satellite measurements. However, the spatial variations of the wave properties cannot be well resolved by satellite observations due to the limited number of available spacecraft simultaneously inside the ion foreshock. Therefore, we conduct a global survey of the ULF wave properties in the ion foreshock through analysis of a Vlasiator (a hybrid-Vlasov code) simulation. Previous studies validated that this simulation well reproduced Earth&amp;#8217;s foreshock and the ULF waves in it [e.g., Palmroth et al., 2015; Turc et al., 2018]. Here we focus on the wave properties, including frequency, ellipticity, polarization, wave normal angle and growth rate, of the well-known 30-sec wave and its multiple harmonics. We report that the ULF waves near the edge of the foreshock are very different from the waves in the center of the foreshock. We also show the related ion distribution and discuss the connection between the observed ion beams and ULF waves, aiming at understanding the cause of the observed differences in wave properties.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This study is supported by NASA grant 80NSSC20K0801. Vlasiator is developed by the European Research Council Starting grant 200141-QuESpace, and Consolidator grant GA682068-PRESTISSIMO received by the Vlasiator PI. Vlasiator has also received funding from the Academy of Finland. See www.helsinki.fi/vlasiator&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Palmroth, M., et al. (2015), ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared, J. Geophys. Res. Space Physics, 120, 8782&amp;#8211;8798, doi:10.1002/2015JA021526.&lt;/p&gt;&lt;p&gt;Turc, L., Ganse, U., Pfau-Kempf, Y., Hoilijoki, S., Battarbee, M., Juusola, L., et al. (2018). Foreshock properties at typical and enhanced interplanetary magnetic field strengths: results from hybrid-Vlasov simulations. Journal of Geophysical Research: Space Physics, 123, 5476&amp;#8211;5493. doi:10.1029/2018JA025466.&lt;/p&gt;


2021 ◽  
Author(s):  
Shuo Ti ◽  
Tao Chen ◽  
Jiansheng Yao

&lt;p&gt;Large-amplitude electromagnetic ion cyclotron (EMIC) waves induce unique dynamics of charged particle movement in the magnetosphere. In a recent study, modulation of the ion pitch angle in the presence of large-amplitude EMIC waves is observed, and there lacks a good explanation for this phenomenon. We investigate this modulation primarily via a 1-D hybrid simulation model and find that the modulation is caused by the bulk velocity triggered by large-amplitude EMIC waves. Affected by the bulk velocity, the number density of ions will enhance around pitch angle . Beyond that, the ion pitch angle is also modulated by the EMIC waves, and the modulation period is half of the EMIC waves' period. In addition, parameters that affect ion pitch angle modulation, including the wave amplitude, ion energy, ion species, and wave normal angle, are studied in our work.&lt;/p&gt;


2021 ◽  
Author(s):  
John C. Foster ◽  
Philip J. Erickson ◽  
Yoshiharu Omura

Abstract Van Allen Probes in situ observations are used to examine detailed subpacket structure observed in strong VLF (very low frequency) rising tone chorus elements observed at the time of a rapid MeV electron energization in the inner magnetosphere. Analysis of the frequency gap between lower and upper chorus-band waves identifies fceEQ, the electron gyrofrequency in the equatorial wave generation region. Initial subpackets in these strong chorus rising-tone elements begin at a frequency near 1/4 fceEQ, exhibit smooth gradual frequency increase across their > 10 ms temporal duration. A second much stronger subpacket is seen at frequencies around the local value of 1/4 fce with small wave normal angle (< 10 deg) and steeply rising df/dt. Smooth frequency and phase variation across and between the initial subpackets supports continuous phase trapping of resonant electrons and increased potential for MeV electron acceleration. The total energy gain for seed electrons with energies between 100 keV and 3 MeV ranges between 2 % and 15 %, in their nonlinear interaction with a single chorus element.


Sign in / Sign up

Export Citation Format

Share Document