A population study of auditory‐nerve fibers in unanesthetized decerebrate cats: Response to pure tones

1990 ◽  
Vol 87 (4) ◽  
pp. 1648-1655 ◽  
Author(s):  
D. O. Kim ◽  
S. O. Chang ◽  
J. G. Sirianni
1982 ◽  
Vol 71 (S1) ◽  
pp. S18-S18 ◽  
Author(s):  
J. McGee ◽  
E. J. Walsh ◽  
M. P. Gorga ◽  
G. R. Farley ◽  
E. Javel

1992 ◽  
Vol 68 (3) ◽  
pp. 807-817 ◽  
Author(s):  
J. B. Kobler ◽  
J. J. Guinan ◽  
S. R. Vacher ◽  
B. E. Norris

1. The sound frequency selectivities of single stapedius motoneurons were investigated in ketamine anesthetized and in decerebrate cats by recording from axons in the small nerve fascicles entering the stapedius muscle. 2. Stapedius motoneuron tuning curves (TCs) were very broad, similar to the tuning of the overall acoustic reflexes as determined by electromyographic recordings. The lowest thresholds were usually for sound frequencies between 1 and 2 kHz, although many TCs also had a second sensitive region in the 6- to 12-kHz range. The broad tuning of stapedius motoneurons implies that inputs derived from different cochlear frequency regions (which are narrowly tuned) must converge at a point central to the stapedius motoneuron outputs, possibly at the motoneuron somata. 3. There were only small differences in tuning among the four previously described groups of stapedius motoneurons categorized by sensitivity to ipsilateral and contralateral sound. The gradation in high-frequency versus low-frequency sensitivity across motoneurons suggests there are not distinct subgroups of stapedius motoneurons, based on their TCs. 4. The thresholds and shapes of stapedius motoneuron TCs support the hypothesis that the stapedius acoustic reflex is triggered by summed activity of low-spontaneous-rate auditory nerve fibers with both low and high characteristic frequencies (CFs). Excitation of high-CF auditory nerve fibers by sound in their TC “tails” is probably an important factor in eliciting the reflex. 5. In general, the most sensitive frequency for stapedius motoneurons is higher than the frequency at which stapedius contractions produce the greatest attenuation of middle ear transmission. We argue that this is true because the main function of the stapedius acoustic reflex is to reduce the masking of responses to high-frequency sounds produced by low-frequency sounds.


2006 ◽  
Vol 96 (5) ◽  
pp. 2327-2341 ◽  
Author(s):  
Anna Dreyer ◽  
Bertrand Delgutte

Although listeners are sensitive to interaural time differences (ITDs) in the envelope of high-frequency sounds, both ITD discrimination performance and the extent of lateralization are poorer for high-frequency sinusoidally amplitude-modulated (SAM) tones than for low-frequency pure tones. Psychophysical studies have shown that ITD discrimination at high frequencies can be improved by using novel transposed-tone stimuli, formed by modulating a high-frequency carrier by a half-wave–rectified sinusoid. Transposed tones are designed to produce the same temporal discharge patterns in high-characteristic frequency (CF) neurons as occur in low-CF neurons for pure-tone stimuli. To directly test this hypothesis, we compared responses of auditory-nerve fibers in anesthetized cats to pure tones, SAM tones, and transposed tones. Phase locking was characterized using both the synchronization index and autocorrelograms. With both measures, phase locking was better for transposed tones than for SAM tones, consistent with the rationale for using transposed tones. However, phase locking to transposed tones and that to pure tones were comparable only when all three conditions were met: stimulus levels near thresholds, low modulation frequencies (<250 Hz), and low spontaneous discharge rates. In particular, phase locking to both SAM tones and transposed tones substantially degraded with increasing stimulus level, while remaining more stable for pure tones. These results suggest caution in assuming a close similarity between temporal patterns of peripheral activity produced by transposed tones and pure tones in both psychophysical studies and neurophysiological studies of central neurons.


1987 ◽  
Vol 82 (6) ◽  
pp. 1989-2000 ◽  
Author(s):  
Li Deng ◽  
C. Daniel Geisler ◽  
Steven Greenberg

Sign in / Sign up

Export Citation Format

Share Document