temporal coding
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 97)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Carrie J Finno ◽  
Yingying Chen ◽  
Seojin Park ◽  
Jeong Han Lee ◽  
Cristina Maria Perez-Flores ◽  
...  

Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH+) primary afferent dorsal root ganglion neurons (DRGNs) within the primary afferent dorsal root ganglia in mice, determined using single-cell transcriptome and electrophysiological analyses. TH+ DRGNs regulate innocuous mechanical sensation through C-low threshold mechanoreceptors. A differential assessment of wild-type and vitamin E deficient TH+ DRGNs revealed heterogeneity and specific functional phenotypes. The TH+ DRGNs comprise; fast-adapting eliciting one action potential (AP; 1-AP), moderately-adapting (>=2-APs), in responses to square-pulse current injection, and spontaneously firing (SF). Cisplatin increased the input resistance and AP frequency but reduced the temporal coding feature of 1-AP and >= 2-APs neurons. By contrast, cisplatin has no measurable effect on the SF neurons. Vitamin E reduced the cisplatin-mediated increased excitability, but did not improve the TH+ neuron temporal coding properties. Cisplatin mediates its effect by targeting outward K+ current, likely carried by through K2P18.1 (Kcnk18), discovered through the differential transcriptome studies and heterologous expression. Studies show a potential new cellular target for chemotherapy-induced peripheral neuropathy and implicate the possible neuroprotective effects of vitamin E in cisplatin chemotherapy.


2022 ◽  
Author(s):  
Saman Abbaspoor ◽  
Ahmed Hussin ◽  
Kari L Hoffman

Nested hippocampal oscillations in the rodent gives rise to temporal coding that may underlie learning, memory, and decision making. Theta/gamma coupling in rodent CA1 occurs during exploration and sharp-wave ripples during quiescence. Whether these oscillatory regimes extend to primates is less clear. We therefore sought to identify correspondences in frequency bands, nesting, and behavioral coupling taken from macaque hippocampus. We found that, in contrast to the rodent, theta and gamma frequency bands in macaque CA1 were segregated by behavioral states. Beta/gamma (15-70Hz) had greater power during visual search while theta (7-10 Hz) dominated during quiescence. Moreover, delta/theta (3-8 Hz) amplitude was strongest when beta2/slow gamma (20-35 Hz) amplitude was weakest, though the low frequencies coupled with higher, ripple frequencies (60-150 Hz). The distribution of spike-field coherence revealed three peaks matching the 3-10 Hz, 20-30 Hz and 60-150 Hz bands; however, the low frequency effects were primarily due to sharp-wave ripples. Accordingly, no intrinsic theta spiking rhythmicity was apparent. These results support a role for beta2/slow gamma modulation in CA1 during active exploration in the primate that is decoupled from theta oscillations. These findings diverge from the rodent oscillatory canon and call for a shift in focus and frequency when considering the primate hippocampus.


2021 ◽  
Author(s):  
Matteo Guardamagna ◽  
Federico Stella ◽  
Francesco P. Battaglia

The hippocampus likely uses temporal coding to represent complex memories via mechanisms such as theta phase precession and theta sequences. Theta sequences are rapid sweeps of spikes from multiple place cells, encoding past or planned trajectories or non-spatial information. Phase precession, the correlation between a place cell's theta firing phase and animal position has been suggested to facilitate sequence emergence. We find that CA1 phase precession varies strongly across cells and environmental contingencies. Phase precession depends on the CA1 network state, and is only present when the medium gamma oscillation (60-90 Hz, linked to Entorhinal inputs) dominates. Conversely, theta sequences are most evident for non-precessing cells or with leading slow gamma (20-45 Hz, linked to CA3 inputs). These results challenge the view that phase precession is the mechanism underlying the emergence of theta sequences and point at a 'dual network states' model for hippocampal temporal code, potentially supporting merging of memory and exogenous information in CA1.


2021 ◽  
Author(s):  
Alexandra Gastone Guilabert ◽  
Benjamin Ehret ◽  
Moritz O. Buchholz ◽  
Gregor F.P. Schuhknecht

To compute spiking responses, neurons integrate inputs from thousands of synapses whose strengths span an order of magnitude. Intriguingly, in mouse neocortex, the small minority of 'strong' synapses is found predominantly between similarly tuned cells, suggesting they are the synapses that determine a neuron's spike output. This raises the question of how other computational primitives, such as 'background' activity from the majority of synapses, which are 'weak', short-term plasticity, and temporal synchrony contribute to spiking. First, we combined extracellular stimulation and whole-cell recordings in mouse barrel cortex to map the distribution of excitatory postsynaptic potential (EPSP) amplitudes and paired-pulse ratios of excitatory synaptic connections converging onto individual layer 2/3 (L2/3) neurons. While generally net short-term plasticity was weak, connections with EPSPs > 2 mV displayed pronounced paired-pulse depression. EPSP amplitudes and paired-pulse ratios of connections converging onto the same neurons spanned the full range observed across L2/3 and there was no indication that strong synapses nor those with particular short-term plasticity properties were associated with particular cells, which critically constrains theoretical models of cortical filtering. To investigate how different computational primitives of synaptic information processing interact to shape spiking, we developed a computational model of a pyramidal neuron in the rodent L2/3 circuitry: firing rates and pairwise correlations of presynaptic inputs were constrained by in vivo observations, while synaptic strength and short-term plasticity were set based on our experimental data. Importantly, we found that the ability of strong inputs to evoke spiking critically depended on their high temporal synchrony and high firing rates observed in vivo and on synaptic background activity - and not primarily on synaptic strength, which in turn further enhanced information transfer. Depression of strong synapses was critical for maintaining a neuron's responsivity and prevented runaway excitation. Our results provide a holistic framework of how cortical neurons exploit complex synergies between temporal coding, synaptic properties, and noise in order to transform synaptic inputs into output firing.


2021 ◽  
Author(s):  
Ravinderjit Singh ◽  
Hari Bharadwaj

The auditory system has exquisite temporal coding in the periphery which is transformed into a rate-based code in central auditory structures like auditory cortex. However, the cortex is still able to synchronize, albeit at lower modulation rates, to acoustic fluctuations. The perceptual significance of this cortical synchronization is unknown. We estimated physiological synchronization limits of cortex (in humans with electroencephalography) and brainstem neurons (in chinchillas) to dynamic binaural cues using a novel system-identification technique, along with parallel perceptual measurements. We find that cortex can synchronize to dynamic binaural cues up to approximately 10 Hz, which aligns well with our measured limits of perceiving dynamic spatial information and utilizing dynamic binaural cues for spatial unmasking, i.e. measures of binaural sluggishness. We also find the tracking limit for frequency modulation (FM) is similar to the limit for spatial tracking, demonstrating that this sluggish tracking is a more general perceptual limit that can be accounted for by cortical temporal integration limits.


2021 ◽  
Author(s):  
Eyal Rozenfeld ◽  
Nadine Ehmann ◽  
Julia E. Manoim ◽  
Robert J. Kittel ◽  
Moshe Parnas

AbstractA key requirement for the repeated identification of a stimulus is a reliable neural representation each time it is encountered. Neural coding is often considered to rely on two major coding schemes: the firing rate of action potentials, known as rate coding, and the precise timing of action potentials, known as temporal coding. Synaptic transmission is the major mechanism of information transfer between neurons. While theoretical studies have examined the effects of neurotransmitter release probability on neural code reliability, it has not yet been addressed how different components of the release machinery affect coding of physiological stimuli in vivo. Here, we use the first synapse of the Drosophila olfactory system to show that the reliability of the neural code is sensitive to perturbations of specific presynaptic proteins controlling distinct stages of neurotransmitter release. Notably, the presynaptic manipulations decreased coding reliability of postsynaptic neurons only at high odor intensity. We further show that while the reduced temporal code reliability arises from monosynaptic effects, the reduced rate code reliability arises from circuit effects, which include the recruitment of inhibitory local neurons. Finally, we find that reducing neural coding reliability decreases behavioral reliability of olfactory stimulus classification.


Author(s):  
Fujian Lu ◽  
Yunzhan Li ◽  
Shengchen Lin ◽  
Heping Cheng ◽  
Shengyu Yang

The store-operated calcium (Ca2+) entry (SOCE) is the Ca2+ entry mechanism used by cells to replenish depleted Ca2+ store. The dysregulation of SOCE has been reported in metastatic cancer. It is believed that SOCE promotes migration and invasion by remodeling the actin cytoskeleton and cell adhesion dynamics. There is recent evidence supporting that SOCE is critical for the spatial and the temporal coding of Ca2+ signals in the cell. In this review, we critically examined the spatiotemporal control of SOCE signaling and its implication in the specificity and robustness of signaling events downstream of SOCE, with a focus on the spatiotemporal SOCE signaling during cancer cell migration, invasion and metastasis. We further discuss the limitation of our current understanding of SOCE in cancer metastasis and potential approaches to overcome such limitation.


2021 ◽  
Vol 11 (4) ◽  
pp. 639-652
Author(s):  
Rosamaria Santarelli ◽  
Pietro Scimemi ◽  
Chiara La Morgia ◽  
Elona Cama ◽  
Ignacio del Castillo ◽  
...  

Auditory Neuropathy (AN) is a hearing disorder characterized by disruption of temporal coding of acoustic signals in auditory nerve fibers resulting in the impairment of auditory perceptions that rely on temporal cues. Mutations in several nuclear and mitochondrial genes have been associated to the most well-known forms of AN. Underlying mechanisms include both pre-synaptic and post-synaptic disorders affecting inner hair cell (IHC) depolarization, neurotransmitter release from ribbon synapses, spike initiation in auditory nerve terminals, loss of nerve fibers and impaired conduction, all occurring in the presence of normal physiological measures of outer hair cell (OHC) activities (otoacoustic emissions [OAEs] and cochlear microphonic [CM]). Disordered synchrony of auditory nerve activity has been suggested as the basis of both the profound alterations of auditory brainstem responses (ABRs) and impairment of speech perception. We will review how electrocochleography (ECochG) recordings provide detailed information to help objectively define the sites of auditory neural dysfunction and their effect on inner hair cell receptor summating potential (SP) and compound action potential (CAP), the latter reflecting disorders of ribbon synapses and auditory nerve fibers.


2021 ◽  
Author(s):  
Mohammad Dehghani Habibabadi ◽  
Klaus Richard Pawelzik

Spiking model neurons can be set up to respond selectively to specific spatio-temporal spike patterns by optimization of their input weights. It is unknown, however, if existing synaptic plasticity mechanisms can achieve this temporal mode of neuronal coding and computation. Here it is shown that changes of synaptic efficacies which tend to balance excitatory and inhibitory synaptic inputs can make neurons sensitive to particular input spike patterns. Simulations demonstrate that a combination of Hebbian mechanisms, hetero-synaptic plasticity and synaptic scaling is sufficient for self-organizing sensitivity for spatio-temporal spike patterns that repeat in the input. In networks inclusion of hetero-synaptic plasticity leads to specialization and faithful representation of pattern sequences by a group of target neurons. Pattern detection is found to be robust against a range of distortions and noise. Furthermore, the resulting balance of excitatory and inhibitory inputs protects the memory for a specific pattern from being overwritten during ongoing learning when the pattern is not present. These results not only provide an explanation for experimental observations of balanced excitation and inhibition in cortex but also promote the plausibility of precise temporal coding in the brain.


Author(s):  
Saeed Reza Kheradpisheh ◽  
Maryam Mirsadeghi ◽  
Timothée Masquelier

Sign in / Sign up

Export Citation Format

Share Document