Recent developments and applications of energy finite‐ element analysis

2006 ◽  
Vol 120 (5) ◽  
pp. 3343-3343 ◽  
Author(s):  
Kuangcheng Wu ◽  
Nickolas Vlahopoulos
Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3369 ◽  
Author(s):  
Won-Hyeon Kim ◽  
Kyoungjae Hong ◽  
Dohyung Lim ◽  
Jong-Ho Lee ◽  
Yu Jung ◽  
...  

Malocclusion is considered as a developmental disorder rather than a disease, and it may be affected by the composition and proportions of masseter muscle fibers. Orthodontics is a specialty of dentistry that deals with diagnosis and care of various irregular bite and/or malocclusion. Recent developments of 3D scanner and 3D printing technology has led to the use of a removable thermoplastic aligner (RTA), which is widely used due to its aesthetic excellence, comfortableness, and time efficiency. However, orthodontics using only an RTA has lower treatment efficacy and accuracy due to the differing movement of teeth from the plan. In order to improve these disadvantages, attachments were used, and biomechanical analyses were performed with and without them. However, there is insufficient research on the movement of teeth and the transfer of load according to the attachment position and shape. Therefore, in our study, we aimed to identify the optimal shape and position of attachments by analyzing various shapes and positions of attachments. Through 3D finite element analysis (FEA), simple tooth shape and mandibular canine shape were extracted in order to construct the orthodontics model which took into account the various shapes and positions of attachments. The optimal shape of a cylinder was derived through the FEA of simple tooth shape and analyzing various positions of attachments on teeth revealed that fixing the attachments at the lingual side of the tooth rather than the buccal side allowed for torque control and an effective movement of the teeth. Therefore, we suggest fixing the attachments at the lingual side rather than the buccal side of the tooth to induce effective movement of teeth in orthodontic treatment with the RTA in case of canine teeth.


Author(s):  
S. N. Medyanik ◽  
N. Vlahopoulos

The Energy Finite Element Analysis (EFEA) has been developed for modeling coupled structural-acoustic systems at mid-to-high frequencies when conventional finite element methods are no longer computationally efficient because they require very fine meshes. In standard Finite Element Analysis (FEA) approach, governing differential equations are formulated in terms of displacements which vary harmonically with space. This requires larger numbers of elements at higher frequencies when wavelengths become smaller. In the EFEA, governing differential equations are formulated in terms of energy density that is spatially averaged over a wavelength and time averaged over a period. The resulting solutions vary exponentially with space which makes them smooth and allows for using much coarser meshes. However, current EFEA formulations require exact matching between the meshes at the boundaries between structural and acoustic domains. This creates practical inconveniences in applying the method as well as limits its use to only fully compatible meshes. In this paper, a new formulation is presented that allows for using incompatible meshes in EFEA modeling, when shapes and/or sizes of elements at structural-acoustic interfaces do not match. In the main EFEA procedure, joints formulations between structural and acoustic domains have been changed in order to deal with non-matching elements. In addition, the new Pre-EFEA procedure which allows for automatic searching and formation of the new types of joints is developed for models with incompatible meshes. The new method is tested using a spherical shaped structural-acoustic interface. Results for incompatible meshes are validated by comparing to solutions obtained using regular compatible meshes. The effects of mesh incompatibility on the accuracy of results are discussed.


Sign in / Sign up

Export Citation Format

Share Document