Dynamic characteristics of nonlinear interaction in elastic medium

2006 ◽  
Vol 119 (5) ◽  
pp. 3293-3294
Author(s):  
Nikolai Zagrai
2020 ◽  
Vol 61 ◽  
pp. 97-117 ◽  
Author(s):  
Rabab A. Shanab ◽  
Mohamed A. Attia ◽  
Salwa A. Mohamed ◽  
Norhan Alaa Mohamed

This paper presents an investigation of the size-dependent static and dynamic characteristics of functionally graded (FG) Timoshenko nanobeams embedded in a double-parameter elastic medium. Unlike existing Timoshenko nanobeam models, the combined effects of surface elasticity, residual surface stress, surface mass density and Poisson’s ratio, in addition to axial deformation, are incorporated in the newly developed model. Also, the continuous gradation through the thickness of all the properties of both bulk and surface materials is considered via power law. The Navier-type solution is developed for simply supported FG nanobeam in the form of infinite power series for bending, buckling and free vibration. The obtained results agree well with those available in the literature. In addition, selected numerical results are presented to explore the effects of the material length scale parameter, surface parameters, gradient index, elastic medium, and thickness on the static and dynamic responses of FG Timoshenko nanobeams.


2020 ◽  
Vol 15 (8) ◽  
Author(s):  
Jinhai Wang ◽  
Jianwei Yang ◽  
Yue Zhao ◽  
Yongliang Bai ◽  
Yuping He

Abstract Gear–wheelset system is a crucial substructure in railway vehicles which affects the operation safety and system reliability, especially in the process of traction and braking conditions. Unlike the general gear transmission system, the gear–wheelset system of railway vehicles operates under an environment with several nonsmooth factors; therefore, it is necessary to analyze the nonsmooth dynamics of the gear–wheelset system for understanding dynamic characteristics better. Herein, a planar dynamic model of the gear–wheelset system of railway vehicles considering motor-driving torque, braking torque, wheel–rail nonlinear interaction forces, nonlinear meshing damping, and piecewise continuous time-varying meshing stiffness is proposed. Then, the proposed model is validated by a simpack model using wheelset's longitudinal velocity. Subsequently, two numerical simulations were performed to reveal the nonsmooth dynamic characteristics under traction and braking conditions. The simulation results indicate that the dynamic stationary point exists in nonsmooth dynamics under traction and braking conditions, which is a critical boundary for transiting any state to a dynamic equilibrium. Besides, the results exhibit the inseparable relationship between time-frequency dynamic characteristics, slip velocity, and wheel–rail nonlinear interaction forces. The effects of harmonic torque under traction conditions and compound braking behavior under braking conditions significantly affect these dynamic characteristics. Additionally, sufficient driving torque can increase the proportion of forward contact and improve the smoothness of the rotation, and the intermittent gear contact phenomenon occurs alternately and frequently in the traction condition. Conversely, only reverse contact occurs in the braking condition.


1998 ◽  
Vol 08 (PR3) ◽  
pp. Pr3-81-Pr3-86
Author(s):  
F. Aniel ◽  
N. Zerounian ◽  
A. Gruhle ◽  
C. Mähner ◽  
G. Vernet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document