spectral components
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 117)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
M. González-Cabrera ◽  
K. Wieland ◽  
E. Eitenberger ◽  
A. Bleier ◽  
L. Brunnbauer ◽  
...  

AbstractThis work presents a multisensor hyperspectral approach for the characterization of ultramarine blue, a valuable historical pigment, at the microscopic scale combining the information of four analytical techniques at the elemental and molecular levels. The hyperspectral images collected were combined in a single hypercube, where the pixels of the various spectral components are aligned on top of each other. Selected spectral descriptors have been defined to reduce data dimensionality before applying unsupervised chemometric data analysis approaches. Lazurite, responsible for the blue color of the pigment, was detected as the major mineral phase present in synthetic and good quality pigments. Impurities like pyrite were detected in lower quality samples, although the clear identification of other mineral phases with silicate basis was more difficult. There is no correlation between the spatial distribution of the bands arising in the Raman spectra of natural samples in the region 1200–1850 cm−1 and any of the transition metals or rare earth elements (REE). With this information, the previous hypothesis (based on bulk analysis) attributing these bands to luminescence emissions due to impurities of these elements must be revised. We propose the consideration of CO2 molecules trapped in the cages of the aluminosilicate structure of sodalite-type. Additionally, correlation between certain Raman features and the combined presence of Ca, P, and REE, in particular Nd, was detected for the lowest quality pigment. Our results highlight the usefulness of fusing chemical images obtained via different imaging techniques to obtain relevant information on chemical structure and properties.


Author(s):  
Kazuki Hoshino ◽  
Daiki Saito ◽  
Yuma Endo ◽  
Takahiro Hasegawa ◽  
Yosuke Tanaka

Abstract We propose slope assisted Brillouin optical time domain analysis (SA-BOTDA) with virtual Brillouin gain spectrum (BGS) generated by multifrequency pump and probe. The virtual BGS having a wide linear slope region of 100 MHz is easily generated by employing time-to-space spectral shaping technique that has been originally developed for generating short optical pulses. We demonstrate the distribution of virtual BGS realized by using five spectral components of pump and probe.


2021 ◽  
pp. 155005942110658
Author(s):  
Alexander T. Duda ◽  
Adam R. Clarke ◽  
Frances M. De Blasio ◽  
Thomas W. Rout ◽  
Robert J. Barry

Following investigations into the benefits of meditation on psychological health and well-being, research is now seeking to understand the mechanisms underlying these outcomes. This study aimed to identify natural alpha and theta frequency components during eyes-closed resting and concentrative meditation states and examined their differences within and between two testing sessions. Novice meditators had their EEG recorded during eyes-closed resting and concentrative meditation conditions, before and after engaging in a brief daily concentrative meditation practice for approximately one-month. Separate frequency Principal Components Analyses (f-PCA) yielded four spectral components of interest, congruent between both conditions and sessions: Delta-Theta-Alpha, Low Alpha, High Alpha, and Alpha-Beta. While all four components showed some increase in the meditation condition at the second session, only Low Alpha (∼9.5-10.0 Hz) showed similar increases while resting. These findings support the use of f-PCA as a novel method of data analysis in the investigation of psychophysiological states in meditation.


2021 ◽  
Vol 21 (11) ◽  
pp. 294
Author(s):  
Qi Wu ◽  
Adriana M. Pires ◽  
Axel Schwope ◽  
Guang-Cheng Xiao ◽  
Shu-Ping Yan ◽  
...  

Abstract Most young neutron stars belonging to the class of Central Compact Objects (CCOs) in supernova remnants do not have known periodicities. We investigated seven such CCOs to understand the common reasons for the absence of detected pulsations. Making use of XMM-Newton, Chandra, and NICER observations, we perform a systematic timing and spectral analysis to derive updated sensitivity limits for both periodic signals and multi-temperature spectral components that could be associated with radiation from hotspots on the neutron star surface. Based on these limits, we then investigated for each target the allowed viewing geometry that could explain the lack of pulsations. We find that it is unlikely (< 10−6) to attribute that we do not see pulsations to an unfavorable viewing geometry for five considered sources. Alternatively, the carbon atmosphere model, which assumes homogeneous temperature distribution on the surface, describes the spectra equally well and provides a reasonable interpretation for the absence of detected periodicities within current limits. The unusual properties of CCOs with respect to other young neutron stars could suggest a different evolutionary path, as that proposed for sources experiencing episodes of significant fallback accretion after the supernova event.


2021 ◽  
Vol 922 (2) ◽  
pp. 255
Author(s):  
Qing-Wen Tang ◽  
Kai Wang ◽  
Liang Li ◽  
Ruo-Yu Liu

Abstract A prompt extra power-law (PL) spectral component that usually dominates the spectral energy distribution below tens of keV or above ∼10 MeV has been discovered in some bright gamma-ray bursts (GRBs). However, its origin is still unclear. In this paper, we present a systematic analysis of 13 Fermi short GRBs, as of 2020 August, with contemporaneous keV–MeV and GeV detections during the prompt emission phase. We find that the extra PL component is a ubiquitous spectral feature for short GRBs, showing up in all 13 analyzed GRBs. The PL indices are mostly harder than −2.0, which may be well reproduced by considering the electromagnetic cascade induced by ultrarelativistic protons or electrons accelerated in the prompt emission phase. The average flux of these extra PL components positively correlates with that of the main spectral components, which implies they may share the same physical origin.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260020
Author(s):  
Brian W. Keeley ◽  
Annika T. H. Keeley

Many mammals and some owls have parallel grooved structures associated with auditory structures that may be exploiting acoustic products generated by groove arrays. To test the hypothesis that morphological structures in the ear can manipulate acoustic information, we expose a series of similar-sized models with and without groove arrays to different sounds in identical conditions and compare their amplitude and frequency responses. We demonstrate how two different acoustic signals are uniquely influenced by the models. Depending on multiple factors (i.e., array characteristics, acoustic signal used, and distance from source) the presence of an array can increase the signal strength of select spectral components when compared to a model with no array. With few exceptions, the models with arrays increased the total amplitude of acoustic signals over that of the smooth model at all distances we tested up to 160 centimeters. We conclude that the ability to uniquely alter the signal based on an array’s characteristics is evolutionarily beneficial and supports the concept that different species have different array configurations associated with their biological needs.


2021 ◽  
Vol 7 (11) ◽  
pp. 247
Author(s):  
Marco Salucci ◽  
Nicola Anselmi

An innovative inverse scattering (IS) method is proposed for the quantitative imaging of pixel-sparse scatterers buried within a lossy half-space. On the one hand, such an approach leverages on the wide-band nature of ground penetrating radar (GPR) data by jointly processing the multi-frequency (MF) spectral components of the collected radargrams. On the other hand, it enforces sparsity priors on the problem unknowns to yield regularized solutions of the fully non-linear scattering equations. Towards this end, a multi-task Bayesian compressive sensing (MT-BCS) methodology is adopted and suitably customized to take full advantage of the available frequency diversity and of the a-priori information on the class of imaged targets. Representative results are reported to assess the proposed MF-MT-BCS strategy also in comparison with competitive state-of-the-art alternatives.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012015
Author(s):  
A E Krasnov ◽  
D Yu Ryzhkova ◽  
V A Vagin

Abstract Methodology for the analysis of concentrations of gaseous composite of atmosphere by the corresponding infrared (IR) spectrum, measured with the help of trajectory spectroradiometers (TSR) is observed. The developed algorithm for mathematical processing of the measurement results is briefly described, including the detection and estimation of the concentrations of the sought gases using the notch filtration of their spectral components, which makes it possible to significantly reduce the concentration identification error. The spectra of various substances in the mid-IR range are considered, and the results of approbation of the technique based on the TSR model with an external high-temperature radiation source on a 1 m path are presented.


2021 ◽  
Vol 58 ◽  
pp. 3-17
Author(s):  
T.M. Bannikova ◽  
V.M. Nemtsov ◽  
N.A. Baranova ◽  
G.N. Konygin ◽  
O.M. Nemtsova

A method for obtaining the interval of statistical error of the solution of the inverse spectroscopy problem, for the estimation of the statistical error of experimental data of which the normal distribution law can be applied, has been proposed. With the help of mathematical modeling of the statistical error of partial spectral components obtained from the numerically stable solution of the inverse problem, it has become possible to specify the error of the corresponding solution. The problem of getting the inverse solution error interval is actual because the existing methods of solution error evaluation are based on the analysis of smooth functional dependences under rigid restrictions on the region of acceptable solutions (compactness, monotonicity, etc.). Their use in computer processing of real experimental data is extremely difficult and therefore, as a rule, is not applied. Based on the extraction of partial spectral components and the estimation of their error, a method for obtaining an interval of statistical error for the solution of inverse spectroscopy problems has been proposed in this work. The necessity and importance of finding the solution error interval to provide reliable results is demonstrated using examples of processing Mössbauer spectra.


Sign in / Sign up

Export Citation Format

Share Document