sige hbt
Recently Published Documents


TOTAL DOCUMENTS

1010
(FIVE YEARS 96)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Vol 25 (2) ◽  
pp. 57-64
Author(s):  
Manel Bouhouche ◽  
◽  
Saida Latreche ◽  

This paper analyzes the single event transient (SET) response of low noise amplifier (LNA) designed using SiGe heterojunction bipolar transistors (HBT). To verify the radiation tolerance of the proposed LNA, a total of four cascode configurations were designed. Comprehensive mixed-mode simulations were performed to evaluate the SET susceptibility of considered LNA cascode configurations, and we have analyzed how the strike parameters affect their output response. In this fact the strike position, linear energy transfer (LET), and track radius, were varied, and the resulting transients were compared for the different LNA configurations. Through this study, the potential capability of the inverse mode SiGe heterojunction bipolar transistor (HBT) in LNA radiation tolerance was confirmed for various strike operating conditions. It has been demonstrated that the single event sensitivity was reduced for LNA employing inverse mode SiGe HBT for strike device. The strike influence on the different LNA configurations response depends on strike LET, where a reduced SET variation is observed for high LET.


2021 ◽  
Author(s):  
Senlin Kong ◽  
Guanyu Wang ◽  
Qi Song ◽  
Yingcong Xiang ◽  
Peng Ling ◽  
...  
Keyword(s):  

Author(s):  
Pournamy Sukumaran ◽  
Navin Kumar ◽  
Maran Ponnambalam

This paper presents an inductor less wideband low noise amplifier (LNA) with an area of 0.3[Formula: see text]mm2, using 130[Formula: see text]nm SiGe BiCMOS technology targeted for 5G WiGig wireless application. A [Formula: see text] boosting amplifier used at the intermediate node of the cascode topology to reduce the noise contribution of the common base (CB) transistor for the first time in SiGe HBT technology. Mathematical analysis shows that the proposed high frequency [Formula: see text] boosting technique on the CB transistor can be optimally tuned for either low NF or high linearity. Furthermore, the circuit incorporates variable capacitors for multimode capability, ensuring optimal performance in all four WiGig channels. Post layout EM simulation of the circuit shows that the resultant LNA has a maximum gain of 21.08[Formula: see text]dB with the [Formula: see text]3 dB frequency over 56[Formula: see text]GHz to 67.3[Formula: see text]GHz. The proposed LNA exhibits a minimum noise figure of 4.3[Formula: see text]dB and shows high linearity with an input referred [Formula: see text] of [Formula: see text]2.7[Formula: see text]dB. The designed when operated using supply voltage of 1.2[Formula: see text]V consumes a total dc power of 8.9[Formula: see text]mW.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1397
Author(s):  
Bishwadeep Saha ◽  
Sebastien Fregonese ◽  
Anjan Chakravorty ◽  
Soumya Ranjan Panda ◽  
Thomas Zimmer

From the perspectives of characterized data, calibrated TCAD simulations and compact modeling, we present a deeper investigation of the very high frequency behavior of state-of-the-art sub-THz silicon germanium heterojunction bipolar transistors (SiGe HBTs) fabricated with 55-nm BiCMOS process technology from STMicroelectronics. The TCAD simulation platform is appropriately calibrated with the measurements in order to aid the extraction of a few selected high-frequency (HF) parameters of the state-of-the-art compact model HICUM, which are otherwise difficult to extract from traditionally prepared test-structures. Physics-based strategies of extracting the HF parameters are elaborately presented followed by a sensitivity study to see the effects of the variations of HF parameters on certain frequency-dependent characteristics until 500 GHz. Finally, the deployed HICUM model is evaluated against the measured s-parameters of the investigated SiGe HBT until 500 GHz.


Sign in / Sign up

Export Citation Format

Share Document