Temporal decay of broadband sound fields in enclosures using a boundary element method

2006 ◽  
Vol 120 (5) ◽  
pp. 3010-3010
Author(s):  
Donald Bliss ◽  
Ben Manning ◽  
Jerry Rouse
1987 ◽  
Vol 109 (1) ◽  
pp. 22-28 ◽  
Author(s):  
C. R. Kipp ◽  
R. J. Bernhard

An indirect boundary element method is developed to predict sound fields in acoustical cavities. An isoparametric quadratic boundary element is utilized. The formulations of pressure, velocity and/or impedance boundary conditions are developed and incorporated into the method. The capability to include acoustic point sources within the cavity is also implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases having a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.


2005 ◽  
Vol 13 (01) ◽  
pp. 71-85 ◽  
Author(s):  
Y. YASUDA ◽  
T. SAKUMA

The fast multipole boundary element method (FMBEM) is an advanced BEM, with which both the operation count and the memory requirements are O(Na log b N) for large-scale problems, where N is the degree of freedom (DOF), a ≥ 1 and b ≥ 0. In this paper, an efficient technique for analyses of plane-symmetric sound fields in the acoustic FMBEM is proposed. Half-space sound fields where an infinite rigid plane exists are typical cases of these fields. When one plane of symmetry is assumed, the number of elements and cells required for the FMBEM with this technique are half of those for the FMBEM used in a naive manner. In consequence, this technique reduces both the computational complexity and the memory requirements for the FMBEM almost by half. The technique is validated with respect to accuracy and efficiency through numerical study.


2005 ◽  
Author(s):  
Chong Wang ◽  
Jason Zhu ◽  
Qijun Zhang ◽  
Charles Yang ◽  
Alan Parrett ◽  
...  

Author(s):  
Xiaobing Cui ◽  
Zhenlin Ji

As an advanced boundary element method (BEM) employing the fast multipole algorithm, the fast multipole boundary element method (FMBEM) has been developed to realize fast computation and drastic memory saving for the large-scale problems. In the present study, The FMBEM is applied to analyze the interior sound fields that partially-filled with sound-absorbing material. The basic principle of FMBEM is introduced briefly, and the domain decomposition approach for FMBEM is investigated. The numerical errors in multipole expansions are analyzed in order to obtain the sufficient accuracy for the FMBEM computation of sound fields in sound-absorbing material. The sound pressures in a duct partially-filled with sound-absorbing material are calculated by using the present FMBEM and the conventional BEM, and then the computational accuracy and efficiency of FMBEM are discussed by comparing the results from the two methods. The numerical results showed that the FMBEM is capable to deal with the sound fields problems in sound-absorbing material, and can save computational time for the acoustic problems with large number of nodes.


Sign in / Sign up

Export Citation Format

Share Document