The sharp frequency selectivity of low- and medium- spontaneous rate auditory nerve fibers might allow for rate-place coding up to 5 kilohertz

2014 ◽  
Vol 135 (4) ◽  
pp. 2165-2165
Author(s):  
Marcos A. Cantu
1986 ◽  
Vol 56 (2) ◽  
pp. 261-286 ◽  
Author(s):  
W. S. Rhode ◽  
P. H. Smith

Physiological response properties of neurons in the ventral cochlear nucleus have a variety of features that are substantially different from the stereotypical auditory nerve responses that serve as the principal source of activation for these neurons. These emergent features are the result of the varying distribution of auditory nerve inputs on the soma and dendrites of the various cell types within the nucleus; the intrinsic membrane characteristics of the various cell types causing different responses to the same input in different cell types; and secondary excitatory and inhibitory inputs to different cell types. Well-isolated units were recorded with high-impedance glass microelectrodes, both intracellularly and extracellularly. Units were characterized by their temporal response to short tones, rate vs. intensity relation, and response areas. The principal response patterns were onset, chopper, and primary-like. Onset units are characterized by a well-timed first spike in response to tones at the characteristic frequency. For frequencies less than 1 kHz, onset units can entrain to the stimulus frequency with greater precision than their auditory nerve inputs. This implies that onset units receive converging inputs from a number of auditory nerve fibers. Onset units are divided into three subcategories, OC, OL, and OI. OC units have extraordinarily wide dynamic ranges and low-frequency selectivity. Some are capable of sustaining firing rates of 800 spikes/s at high intensities. They have the smallest standard deviation and coefficient of variation of the first spike latency of any cells in the cochlear nuclei. OC units are candidates for encoding intensity. OI and OL units differ from OC units in that they have dynamic ranges and frequency selectivity ranges much like those of auditory nerve fibers. They differ from one another in their steady-state firing rates; OI units fire mainly at the onset of a tone. OI units also differ from OL units in that they prefer frequency sweeps in the low to high direction. Primary-like-with-notch (PLN) units also respond to tones with a well-timed first spike. They differ from onset cells in that the onset peak is not always as precise as the spontaneous rate is higher. A comparison of spontaneous firing rate and saturation firing rate of PLN units with auditory nerve fibers suggest that PLN units receive one to four auditory nerve fiber inputs. Chopper units fire in a sustained regular manner when they are excited by sound.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Carolyn M. McClaskey ◽  
James W. Dias ◽  
Richard A. Schmiedt ◽  
Judy R. Dubno ◽  
Kelly C. Harris

1994 ◽  
Vol 6 (6) ◽  
pp. 1127-1140 ◽  
Author(s):  
Ying-Cheng Lai ◽  
Raimond L. Winslow ◽  
Murray B. Sachs

Chopper cells in the anteroventral cochlear nucleus of the cat maintain a robust rate-place representation of vowel spectra over a broad range of stimulus levels. This representation resembles that of low threshold, high spontaneous rate primary auditory nerve fibers at low stimulus levels, and that of high threshold, low spontaneous rate auditory-nerve fibers at high stimulus levels. This has led to the hypothesis that chopper cells in the anteroventral cochlear nucleus selectively process inputs from different spontaneous rate populations of primary auditory-nerve fibers at different stimulus levels. We present a computational model, making use of shunting inhibition, for how this level dependent processing may be performed within the chopper cell dendritic tree. We show that this model (1) implements level-dependent selective processing, (2) reproduces detailed features of real chopper cell post-stimulus-time histograms, and (3) reproduces nonmonotonic rate versus level functions in response to single tones measured.


Sign in / Sign up

Export Citation Format

Share Document