Behavioral response of select reef fish and sea turtles to mid-frequency sonar

2014 ◽  
Vol 135 (4) ◽  
pp. 2367-2367
Author(s):  
Stephanie L. Watwood ◽  
Joseph D. Iafrate ◽  
Eric A. Reyier ◽  
William E. Redfoot
2010 ◽  
Vol 8 (1) ◽  
pp. 187-192 ◽  
Author(s):  
Cristina Sazima ◽  
Alice Grossman ◽  
Ivan Sazima

In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis) at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.


2019 ◽  
Vol 132 (2) ◽  
pp. 99-108
Author(s):  
RY Mejía-Radillo ◽  
AA Zavala-Norzagaray ◽  
JA Chávez-Medina ◽  
AA Aguirre ◽  
CM Escobedo-Bonilla
Keyword(s):  

2018 ◽  
Vol 589 ◽  
pp. 263-268 ◽  
Author(s):  
B Calmanovici ◽  
D Waayers ◽  
J Reisser ◽  
J Clifton ◽  
M Proietti

2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


2019 ◽  
Vol 18 (1) ◽  
pp. 3 ◽  
Author(s):  
Charles J. Innis ◽  
Sarah Finn ◽  
Adam Kennedy ◽  
Elizabeth Burgess ◽  
Terry Norton ◽  
...  

Author(s):  
Vincentius P. Siregar ◽  
Sam Wouthuyzen ◽  
Andriani Sunuddin ◽  
Ari Anggoro ◽  
Ade Ayu Mustika

Shallow marine waters comprise diverse benthic types forming habitats for reef fish community, which important for the livelihood of coastal and small island inhabitants. Satellite imagery provide synoptic map of benthic habitat and further utilized to estimate reef fish stock. The objective of this research was to estimate reef fish stock in complex coral reef of Pulau Pari, by utilizing high resolution satellite imagery of the WorldView-2 in combination with field data such as visual census of reef fish. Field survey was conducted between May-August 2013 with 160 sampling points representing four sites (north, south, west, and east). The image was analy-zed and grouped into five classes of benthic habitats i.e., live coral (LC), dead coral (DC), sand (Sa), seagrass (Sg), and mix (Mx) (combination seagrass+coral and seagrass+sand). The overall accuracy of benthic habitat map was 78%. Field survey revealed that the highest live coral cover (58%) was found at the north site with fish density 3.69 and 1.50 ind/m2at 3 and 10 m depth, respectively. Meanwhile, the lowest live coral cover (18%) was found at the south site with fish density 2.79 and 2.18  ind/m2 at 3 and 10 m depth, respectively. Interpolation on fish density data in each habitat class resulted in standing stock reef fish estimation:  LC (5,340,698 ind), DC (56,254,356 ind), Sa (13,370,154 ind), Sg (1,776,195 ind) and Mx (14,557,680 ind). Keywords: mapping, satellite imagery, benthic habitat, reef fish, stock estimation


Sign in / Sign up

Export Citation Format

Share Document