scholarly journals Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts

2020 ◽  
Vol 6 (11) ◽  
pp. eaaz0510 ◽  
Author(s):  
Yonggang Yao ◽  
Zhenyu Liu ◽  
Pengfei Xie ◽  
Zhennan Huang ◽  
Tangyuan Li ◽  
...  

Multi-elemental alloy nanoparticles (MEA-NPs) hold great promise for catalyst discovery in a virtually unlimited compositional space. However, rational and controllable synthesize of these intrinsically complex structures remains a challenge. Here, we report the computationally aided, entropy-driven design and synthesis of highly efficient and durable catalyst MEA-NPs. The computational strategy includes prescreening of millions of compositions, prediction of alloy formation by density functional theory calculations, and examination of structural stability by a hybrid Monte Carlo and molecular dynamics method. Selected compositions can be efficiently and rapidly synthesized at high temperature (e.g., 1500 K, 0.5 s) with excellent thermal stability. We applied these MEA-NPs for catalytic NH3 decomposition and observed outstanding performance due to the synergistic effect of multi-elemental mixing, their small size, and the alloy phase. We anticipate that the computationally aided rational design and rapid synthesis of MEA-NPs are broadly applicable for various catalytic reactions and will accelerate material discovery.

2020 ◽  
Vol 6 (25) ◽  
pp. eaaz2060 ◽  
Author(s):  
Shanshan Dang ◽  
Bin Qin ◽  
Yong Yang ◽  
Hui Wang ◽  
Jun Cai ◽  
...  

Renewable energy-driven methanol synthesis from CO2 and green hydrogen is a viable and key process in both the “methanol economy” and “liquid sunshine” visions. Recently, In2O3-based catalysts have shown great promise in overcoming the disadvantages of traditional Cu-based catalysts. Here, we report a successful case of theory-guided rational design of a much higher performance In2O3 nanocatalyst. Density functional theory calculations of CO2 hydrogenation pathways over stable facets of cubic and hexagonal In2O3 predict the hexagonal In2O3(104) surface to have far superior catalytic performance. This promotes the synthesis and evaluation of In2O3 in pure phases with different morphologies. Confirming our theoretical prediction, a novel hexagonal In2O3 nanomaterial with high proportion of the exposed {104} surface exhibits the highest activity and methanol selectivity with high catalytic stability. The synergy between theory and experiment proves highly effective in the rational design and experimental realization of oxide catalysts for industry-relevant reactions.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Frédéric Rosu ◽  
Valérie Gabelica ◽  
Nicolas Smargiasso ◽  
Gabriel Mazzucchelli ◽  
Kazuo Shin-Ya ◽  
...  

The binding mode of telomestatin to G-quadruplex DNA has been investigated using electrospray mass spectrometry, by detecting the intact complexes formed in ammonium acetate. The mass measurements show the incorporation of one extra ammonium ion in the telomestatin complexes. Experiments on telomestatin alone also show that the telomestatin alone is able to coordinate cations in a similar way as a crown ether. Finally, density functional theory calculations suggest that in the G-quadruplex-telomestatin complex, potassium or ammonium cations are located between the telomestatin and a G-quartet. This study underlines that monovalent cation coordination capabilities should be integrated in the rational design of G-quadruplex binding ligands.


Nanoscale ◽  
2019 ◽  
Vol 11 (28) ◽  
pp. 13600-13611 ◽  
Author(s):  
Pengfei Ou ◽  
Xiao Zhou ◽  
Fanchao Meng ◽  
Cheng Chen ◽  
Yiqing Chen ◽  
...  

Single Mo center supported on N-doped black phosphorus is predicted to be a compelling highly efficient and durable catalyst for electrochemical N2 fixation by density functional theory calculations.


Author(s):  
Xin-Chen Zhu ◽  
Wei Zhang ◽  
Qian Xia ◽  
Anfu Hu ◽  
Jian Jiang ◽  
...  

To study the effect of coordination field on catalytic property is critical for rational design of outstanding electrocatalyst for H2O2 synthesis. Herein, via density functional theory calculations, we built an...


RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69647-69657 ◽  
Author(s):  
Walid Sharmoukh Walid Sharmoukh ◽  
Walid M. I. Hassan ◽  
Philippe C. Gros ◽  
Nageh K. Allam

Design of photosensitizers aided by density functional theory calculations.


The Analyst ◽  
2018 ◽  
Vol 143 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Camilla Fonseca Silva ◽  
Keyller Bastos Borges ◽  
Clebio Soares do Nascimento

In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), by testing distinct functional monomers (FM) in various solvents through density functional theory calculations.


2012 ◽  
Vol 1451 ◽  
pp. 39-44
Author(s):  
Si Zhou ◽  
S. Kim ◽  
Y. Hu ◽  
C. Berger ◽  
W. de Heer ◽  
...  

ABSTRACTGraphene oxide holds great promise for future applications in nano-technology. The chemistry of this material is not well understood. This understanding is crucial to enable future applications of graphene oxide. In this study, experiments and density functional theory calculations are combined to elucidate the chemical properties of multilayer graphene oxide obtained by oxidizing epitaxial graphene grown on silicon carbide via the Hummers method. This study shows that at room temperature as prepared graphene oxide films exhibit a uniform and homogeneous structure, include a minimal amount of edges and holes, and have an oxidation ratio of about 0.44. The comparison with density-functional calculations shows that graphene oxide includes a minimal amount of intercalated water molecules and well-defined fractions of epoxide and hydroxyl groups.


Sign in / Sign up

Export Citation Format

Share Document