Inorganic Nitrogen Removal from Wastewater: Effect on Phytoplankton Growth in Coastal Marine Waters

Science ◽  
1973 ◽  
Vol 180 (4089) ◽  
pp. 955-956 ◽  
Author(s):  
J. C. Goldman ◽  
K. R. Tenore ◽  
H. I. Stanley
2010 ◽  
Vol 61 (5) ◽  
pp. 1137-1146 ◽  
Author(s):  
M. A. Camargo Valero ◽  
L. F. Read ◽  
D. D. Mara ◽  
R. J. Newton ◽  
T. P. Curtis ◽  
...  

A pilot-scale primary maturation pond was spiked with 15N-labelled ammonia (15NH4Cl) and 15N-labelled nitrite (Na15NO2), in order to improve current understanding of the dynamics of inorganic nitrogen transformations and removal in WSP systems. Stable isotope analysis of δ15N showed that nitrification could be considered as an intermediate step in WSP, which is masked by simultaneous denitrification, under conditions of low algal activity. Molecular microbiology analysis showed that denitrification can be considered a feasible mechanism for permanent nitrogen removal in WSP, which may be supported either by ammonia-oxidising bacteria (AOB) or by methanotrophs, in addition to nitrite-oxidising bacteria (NOB). However, the relative supremacy of the denitrification process over other nitrogen removal mechanisms (e.g., biological uptake) depends upon phytoplanktonic activity.


2021 ◽  
pp. 117895
Author(s):  
Liuqin Huang ◽  
Junyue Luo ◽  
Linxin Li ◽  
Hongchen Jiang ◽  
Xiaoxi Sun ◽  
...  

2019 ◽  
Vol 55 (2) ◽  
pp. 145-154
Author(s):  
Biao Xie ◽  
Chao Jin ◽  
Wayne J. Parker

Abstract A partial nitritation/anammox (PN/A) process was operated at two different mixing intensities to quantify the extent to which diffusional limitations impact process rates. At a steady-state operation, the total inorganic nitrogen removal efficiency in the bench-scale sequencing batch reactors was found to increase as mixing intensity decreased (62 and 84% for average velocity gradient (G) values of 15 and 5.3 s−1, respectively). The half-velocity constants with respect to bulk-phase dissolved oxygen (DO) concentration for ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) organisms were estimated on the basis of nitrogen removal rates that were observed in activity tests. The activity tests were conducted over a range of bulk-phase DO concentrations. The best-fit values were estimated to be 0.68 ± 0.34 and 0.54 ± 0.56 mg O2/L for G values of 15 and 5.3 s−1, respectively. The AOB values were not statistically different (p = 0.19) between mixing conditions which were consistent with AOB dominating the surface of granules. The best-fit values were estimated to be 0.13 ± 0.09 and 0.55 ± 0.40 mg O2/L for G values of 15 and 5.3 s−1, respectively, and were statistically different . The results demonstrated that mixing conditions should be considered when designing PN/A processes and provide quantitative results that can be employed to improve models of these processes. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).


Sign in / Sign up

Export Citation Format

Share Document