isotope analysis
Recently Published Documents


TOTAL DOCUMENTS

4025
(FIVE YEARS 1134)

H-INDEX

102
(FIVE YEARS 11)

Talanta ◽  
2022 ◽  
Vol 239 ◽  
pp. 123133
Author(s):  
Lan-tian Xing ◽  
Zhong-ping Li ◽  
Li Xu ◽  
Li-wu Li ◽  
Yan Liu

2022 ◽  
Vol 41 ◽  
pp. 103325
Author(s):  
Patxi Pérez-Ramallo ◽  
José Ignacio Lorenzo-Lizalde ◽  
Alexandra Staniewska ◽  
Belén Lopez ◽  
Michelle Alexander ◽  
...  

2022 ◽  
Vol 177 (2) ◽  
Author(s):  
Dengfeng Li ◽  
Yu Fu ◽  
Pete Hollings ◽  
Roger H. Mitchell ◽  
Shannon Zurevinski ◽  
...  

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12777
Author(s):  
Svenja Meyer ◽  
Dominika Kundel ◽  
Klaus Birkhofer ◽  
Andreas Fliessbach ◽  
Stefan Scheu

Higher frequencies of summer droughts are predicted to change soil conditions in the future affecting soil fauna communities and their biotic interactions. In agroecosystems drought effects on soil biota may be modulated by different management practices that alter the availability of different food resources. Recent studies on the effect of drought on soil microarthropods focused on measures of abundance and diversity. We here additionally investigated shifts in trophic niches of Collembola and Oribatida as indicated by stable isotope analysis (13C and 15N). We simulated short-term summer drought by excluding 65% of the ambient precipitation in conventionally and organically managed winter wheat fields on the DOK trial in Switzerland. Stable isotope values suggest that plant litter and root exudates were the most important resources for Collembola (Isotoma caerulea, Isotomurus maculatus and Orchesella villosa) and older plant material and microorganisms for Oribatida (Scheloribates laevigatus and Tectocepheus sarekensis). Drought treatment and farming systems did not affect abundances of the studied species. However, isotope values of some species increased in organically managed fields indicating a higher proportion of microorganisms in their diet. Trophic niche size, a measure of both isotope values combined, decreased with drought and under organic farming in some species presumably due to favored use of plants as basal resource instead of algae and microorganisms. Overall, our results suggest that the flexible usage of resources may buffer effects of drought and management practices on the abundance of microarthropods in agricultural systems.


2022 ◽  
Vol 12 ◽  
Author(s):  
Simon Blotevogel ◽  
Priscia Oliva ◽  
Laurence Denaix ◽  
Stéphane Audry ◽  
Jerome Viers ◽  
...  

Even though copper (Cu) is an essential plant nutrient, it can become toxic under certain conditions. Toxic effects do not only depend on soil Cu content, but also on environmental and physiological factors, that are not well understood. In this study, the mechanisms of Cu bioavailability and the homeostasis of Vitis vinifera L. cv. Tannat were investigated under controlled conditions, using stable Cu isotope analysis. We measured Cu concentrations and δ65Cu isotope ratios in soils, soil solutions, roots, and leaves of grapevine plants grown on six different vineyard soils, in a 16-week greenhouse experiment. The mobility of Cu in the soil solutions was controlled by the solubility of soil organic matter. No direct relationship between Cu contents in soils or soil solutions and Cu contents in roots could be established, indicating a partly homeostatic control of Cu uptake. Isotope fractionation between soil solutions and roots shifted from light to heavy with increasing Cu exposure, in line with a shift from active to passive uptake. Passive uptake appears to exceed active uptake for soil solution concentrations higher than 270 μg L–1. Isotope fractionation between roots and leaves was increasingly negative with increasing root Cu contents, even though the leaf Cu contents did not differ significantly. Our results suggest that Cu isotope analysis is a sensitive tool to monitor differences in Cu uptake and translocation pathways even before differences in tissue contents can be observed.


Author(s):  
Ji-Yeon Cheon ◽  
Hyunjoon Cho ◽  
Mincheol Kim ◽  
Hyun Je Park ◽  
Tae-Yoon Park ◽  
...  

Gut microbiome is vertically transmitted by maternal lactation at birth in mammals. In this study, we investigated the gut microbiome and diet compositions of muskox, a large herbivore in the high Arctic. From muskox feces in Ella Island, East Greenland, we compared the microbiota composition using bacterial 16S rRNA gene sequencing and the dietary compositions of six female adults and four calves have been compared. Firmicutes was the most abundant bacterial phylum in both adults and calves, comprising 94.36% and 94.03%, respectively. There were significant differences in the relative abundance of two Firmicutes families: the adults were mainly dominated by Ruminococcaceae (73.90%), while the calves were dominated by both Ruminococcaceae (56.25%) and Lachnospiraceae (24.00%). Stable isotope analysis on the feces and eight referential plant samples in the study area showed that both adults and calves had similar ranges of 13C and 15N, possibly derived from the dominant diet plants of Empetrum nigrum and Salix glauca. Despite the similar diets, the different gut microbiome compositions in muskox adults and calves indicate that the gut microbiome of the calves may not be fully colonized yet as much as the one of the adults.


2022 ◽  
Vol 49 (4) ◽  
pp. 80-90
Author(s):  
A. N. Babenko ◽  
M. V. Dobrovolskaya ◽  
E. E. Vasilyeva ◽  
D. S. Korobov

Settlement and economy patterns of the Iron Age and early medieval population of the Central North Caucasus evidence complex cultural processes in the region. The ecological approach including the evaluation of carbon and nitrogen isotopes in the local biota opens up new prospects in the study of environments, climate, anthropogenic effect, land use, and nutrition. We analyze the isotopic composition of collagen in 19 human and 11 animal bone samples from Kichmalka II—a cemetery successively used by the Koban people, those of the Sarmatian stage, and Alans. The isotopic composition of the Alanian sample indicates a heavy predominance of plants with the C3-type photosynthesis in the diet of humans and animals. People who lived during the Koban and Sarmatian stages consumed also C4-plants, such as common millet (Panicum miliaceum), suggesting the rise of the trophic step for carbon (Δδ13Chuman-animal). Statistically signifi cant differences in the isotopic composition of carbon were found within the Koban population, apparently evidencing two dietary models. The Δδ15Nhuman-animal values fall within the trophic step, mirroring a focus on meat and dairy products in the diet of all groups. Comparison with respective data on the Klin-Yar III cemetery revealed differences in isotopic signatures in the diet of both humans and domestic animals during the Koban period. The possible reason is climatic change in the Iron Age and the variable share of millet in the diet of the Koban people. The low proportion of δ15N (below 4 ‰) in the bone collagen of goat, sheep, and horse of the Alanian period may attest to vertical transhumance.


Sign in / Sign up

Export Citation Format

Share Document