treatment system
Recently Published Documents





Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 15
Lavane Kim ◽  
Nguyen Truong Thanh ◽  
Pham Van Toan ◽  
Huynh Vuong Thu Minh ◽  
Pankaj Kumar

Because of its threat to the quality of freshwater resources and human health, arsenic (As) pollution is important to scientific communities and policymakers around the world. The Mekong Delta, Vietnam, is one hotspot of As pollution. Its risk assessment of different environmental components has been well documented; however, very few studies focus on As removal techniques. Considering this information gap, this study aimed to investigate the performance of an innovative and low-cost treatment system using Fe(III)-oxyhydroxide (FeOOH) coated sand to remove As(III) from aqueous solution. Batch and column experiments were conducted at a laboratory scale in order to study removal kinetics and efficiency. Experimental results indicated that the adsorption isotherm of As(III) on FeOOH coated sand using Langmuir and Freundlich models have high regression factors of 0.987 and 0.991, respectively. The batch adsorption experiment revealed that contact time was approximately 8 h for rough saturation (kinetic test). The concentration of As(III) in effluents at flow rates of 0.6 L/h, 0.9 L/h, and 1.8 L/h ranged from 1.1 µg/L to 1.7 µg/L. Results from this study indicated that FeOOH coated sand columns were effective in removing As(III) from water, with a removal efficiency of 99.1%. Ultimately, FeOOH coated sand filtration could be a potential treatment system to reduce As(III) in the domestic water supply in remote areas of the Vietnamese Mekong Delta.

Laura B. McCalla ◽  
Bryn M. Phillips ◽  
Brian S. Anderson ◽  
Jennifer P. Voorhees ◽  
Katie Siegler ◽  

AbstractThe Salinas Valley in Monterey County, California, USA, is a highly productive agricultural region. Irrigation runoff containing pesticides at concentrations toxic to aquatic organisms poses a threat to aquatic ecosystems within local watersheds. This study monitored the effectiveness of a constructed wetland treatment system with a granulated activated carbon (GAC) filter installation at reducing pesticide concentrations and associated toxicity to Ceriodaphnia dubia, Hyalella azteca, and Chironomus dilutus. The wetland was supplied with water pumped from an impaired agricultural and urban drainage. Across five monitoring trials, the integrated system’s average pesticide concentration reduction was 52%. The wetland channel and GAC filtration components individually provided significant treatment, and within each, pesticide solubility had a significant effect on changes in pesticide concentrations. The integrated treatment system also reduced nitrate by 61%, phosphate by 73%, and turbidity by 90%. Input water was significantly toxic to C. dubia and H. azteca in the first trial. Toxicity to C. dubia persisted throughout the system, whereas toxicity to H. azteca was removed by the channel, but there was residual toxicity post-GAC. The final trial had significant input toxicity to H. azteca and C. dilutus. The channel reduced toxicity to H. azteca and removed toxicity to C. dilutus. GAC filtration reduced H. azteca toxicity to an insignificant level. There was no input toxicity in the other three trials. The results demonstrate that a wetland treatment system coupled with GAC filtration can reduce pesticide concentrations, nutrients, suspended particles, and aquatic toxicity associated with agricultural runoff.

Sign in / Sign up

Export Citation Format

Share Document