total primary production
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1610
Author(s):  
Ho-Won Lee ◽  
Jae-Hoon Noh ◽  
Dong-Han Choi ◽  
Misun Yun ◽  
P. S. Bhavya ◽  
...  

Picocyanobacteria (Prochlorococcus and Synechococcus) play an important role in primary production and biogeochemical cycles in the subtropical and tropical Pacific Ocean, but little biological information on them is currently available in the North Pacific Ocean (NPO). The present study aimed to determine the picocyanobacterial contributions to the total primary production in the regions in the NPO using a combination of a dual stable isotope method and metabolic inhibitor. In terms of cell abundance, Prochlorococcus were mostly dominant (95.7 ± 1.4%) in the tropical Pacific region (hereafter, TP), whereas Synechococcus accounted for 50.8%–93.5% in the subtropical and temperate Pacific region (hereafter, SP). Regionally, the averages of primary production and picocyanobacterial contributions were 11.66 mg C m−2·h−1 and 45.2% (±4.8%) in the TP and 22.83 mg C m−2·h−1 and 70.2% in the SP, respectively. In comparison to the carbon, the average total nitrogen uptake rates and picocyanobacterial contributions were 10.11 mg N m−2·h−1 and 90.2% (±5.3%) in the TP and 4.12 mg N m−2·h−1 and 63.5%, respectively. These results indicate that picocyanobacteria is responsible for a large portion of the total primary production in the region, with higher contribution to nitrogen uptake rate than carbon. A long-term monitoring on the picocyanobacterial variability and contributions to primary production should be implemented under the global warming scenario with increasing ecological roles of picocyanobacteria.


2019 ◽  
Vol 124 (11) ◽  
pp. 8324-8341 ◽  
Author(s):  
Yu Jeong Lim ◽  
Tae‐Wan Kim ◽  
SangHoon Lee ◽  
Dabin Lee ◽  
Jisoo Park ◽  
...  

2018 ◽  
Vol 26 (2) ◽  
pp. 117-122
Author(s):  
A. I. Kopylov ◽  
D. B. Kosolapov ◽  
V. I. Lazareva ◽  
N. M. Mineeva ◽  
E. G. Pryanichnikova

Using our own data and data from the literature, we assessed the total biomass of the biotic component of the ecosystem of the Ivankovo Reservoir (Upper Volga, Russia), a eutrophic reservoir which is becoming overgrown with macrophytes. The biotic component of freshwater ecosystems is formed by communities of multicellular and unicellular organisms and viruses in the water layer (plankton) and bottom sediments (benthos) and also macrophytes and autotrophic and heterotrophic organisms growing on their surface (epiphyton). The biomass of the biotic component of the Ivankovo Reservoir equaled 39,853 tons С. Plankton, benthos and macrophytes with epiphyton equaled 3.6%, 41.6% and 54.8% of the total biomass respectively. We determined the contribution of higher aquatic plants, algae, cyanobacteria, heterotrophic bacteria, viruses, protozoans, multicellular invertebrates and fish to the formation of total biomass. The largest share was taken up by higher aquatic plants (54.5%). The second largest share was taken by heterotrophic bacteria (37.4%), most of which live in the bottom sediments. The high concentration of bacteria and invertebrates in the bottom sediments indicate significant provision of the organic substrates from the water column. The biomass of fish, the highest trophic link in the reservoir, equaled 15.0% of the biomass of their potential food substrates, invertebrate animals, and 0.7% of the total biomass of the biotic component. The greater part of the autochthonous organic compound in the reservoir is formed as a result of activity of phytoplankton, which provides 69.4% of total primary production of macrophytes, phytoepiphyton, phytoplankton and phytobenthos. The total primary production during the vegetation period was approximately forty times higher than the annual production of the fish. Currently, the share in the phytoplankton of large colonial cyanobacteria not consumed by zooplankton, the share of non-heterocystic species of cyanobacteria capable of heterotrophic feeding and the share of mixotrophic flagellates is increasing. Eutrophication of the reservoir is significantly stimulated by the development of macrophytes, and, presumably, the contribution of macrophytes to the total primary production of the reservoir will continue to increase.


2016 ◽  
Vol 121 (1) ◽  
pp. 934-948 ◽  
Author(s):  
Meibing Jin ◽  
Ekaterina E. Popova ◽  
Jinlun Zhang ◽  
Rubao Ji ◽  
Daniel Pendleton ◽  
...  

2014 ◽  
Vol 18 (3) ◽  
pp. 1073-1087 ◽  
Author(s):  
A. Parvathi ◽  
X. Zhong ◽  
A. S. Pradeep Ram ◽  
S. Jacquet

Abstract. Microbial dynamics have rarely been investigated in Lake Geneva, known as the largest lake in western Europe. From a 5-month survey, we report dynamic patterns of free-living virus, bacteria and small phytoplankton abundances in response to a variety of environmental parameters. For the first time, we fractionated the primary production to separate the contribution of different size-related biological compartments and measured both bacterial and viral production in addition to experiments conducted to quantify the virus-induced bacterial mortality. We observed marked seasonal and vertical variations in picocyanobacteria, bacteria and virus abundances and production. The contribution of picoplankton and nanoplankton production to the total primary production was high (reaching up to 76% of total primary production) in November and the spring–summer transition period, respectively. The impact of viral lysis on both bacteria and picocyanobacteria was significantly higher than grazing activities. Virus-induced picocyanobacterial mortality reached up to 66% of cell removal compared to virus induced (heterotrophic) bacterial mortality, which reached a maximum of 34% in July. Statistical analyzes revealed that temperature and top-down control by viruses are among important factors regulating the picocyanobacterial dynamics in this lake. More generally speaking, our results add to the growing evidence and accepted view nowadays that viruses are an important actor of freshwater microbial dynamics and more globally of the functioning of the microbial food webs.


2013 ◽  
Vol 68 ◽  
pp. 43-50 ◽  
Author(s):  
Sang H. Lee ◽  
Mi Sun Yun ◽  
Bo Kyung Kim ◽  
HuiTae Joo ◽  
Sung-Ho Kang ◽  
...  

2012 ◽  
Vol 26 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Julia Uitz ◽  
Dariusz Stramski ◽  
Bernard Gentili ◽  
Fabrizio D'Ortenzio ◽  
Hervé Claustre

2010 ◽  
Vol 67 (2) ◽  
pp. 278-287 ◽  
Author(s):  
Leah M. Domine ◽  
Michael J. Vanni ◽  
William H. Renwick

The concept of new and regenerated production has been used extensively in marine ecosystems but rarely in freshwaters. We assessed the relative importance of new and regenerated phosphorus (P) in sustaining phytoplankton production in Acton Lake, a eutrophic reservoir located in southwestern Ohio, USA. Sources of nutrients to the euphotic zone, including watershed loading, fluxes from sediments, and excretion by sediment-feeding fish (gizzard shad, Dorosoma cepedianum ), were considered sources of new P input that support new primary production and were quantified over the course of a growing season. Regenerated production was estimated by the difference between new and total primary production. New production represented 32%–53% of total primary production, whereas regenerated production represented 47%–68% of total primary production. P excretion by gizzard shad supplied 45%–74% of new P and 24% of P required for total production. In summary, fluxes of P from the watershed and those from sediment-feeding fish need to be considered in strategies to reduce eutrophication in reservoir ecosystems.


Sign in / Sign up

Export Citation Format

Share Document