Climate-Related, Long-Term Faunal Changes in a California Rocky Intertidal Community

Science ◽  
1995 ◽  
Vol 267 (5198) ◽  
pp. 672-675 ◽  
Author(s):  
J. P. Barry ◽  
C. H. Baxter ◽  
R. D. Sagarin ◽  
S. E. Gilman
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hui Zhou ◽  
Jehad Alzabut ◽  
Shahram Rezapour ◽  
Mohammad Esmael Samei

Abstract In this paper, a nonlinear nonautonomous model in a rocky intertidal community is studied. The model is composed of two species in a rocky intertidal community and describes a patch occupancy with global dispersal of propagules and occupy each other by individual organisms. Firstly, we study the uniform persistence of the model via differential inequality techniques. Furthermore, a sharp threshold of global asymptotic stability and the existence of a unique almost periodic solution are derived. To prove the main results, we construct an appropriate Lyapunov function whose conditions are easily verified. The assumptions of the model are reasonable, and the results complement previously known ones. An example with specific values of parameters is included for demonstration of theoretical outcomes.


1983 ◽  
Vol 121 (5) ◽  
pp. 729-738 ◽  
Author(s):  
Teresa Turner

2005 ◽  
Vol 15 (5) ◽  
pp. 1813-1832 ◽  
Author(s):  
John R. Steinbeck ◽  
David R. Schiel ◽  
Michael S. Foster

2010 ◽  
Vol 392 (1-2) ◽  
pp. 160-175 ◽  
Author(s):  
Bruce A. Menge ◽  
Melissa M. Foley ◽  
Jacque Pamplin ◽  
Gayle Murphy ◽  
Camryn Pennington

2003 ◽  
Vol 100 (21) ◽  
pp. 12229-12234 ◽  
Author(s):  
B. A. Menge ◽  
J. Lubchenco ◽  
M. E. S. Bracken ◽  
F. Chan ◽  
M. M. Foley ◽  
...  

2001 ◽  
Vol 2001 (1) ◽  
pp. 559-567 ◽  
Author(s):  
Edward S. Gilfillan ◽  
David S. Page ◽  
Keith R. Parker ◽  
Jerry M. Neff ◽  
Paul D. Boehm

ABSTRACT A shoreline ecology program was performed in Prince William Sound (PWS), Alaska in 1990 and 1991 (1 and 2 years after the Exxon Valdez oil spill, EVOS) to assess the fate and effects of the oil in the intertidal zone. Major components of the study were repeated in 1998 and 1999. This update included a sediment-sampling program at formerly oiled “worst-case” boulder/cobble (B/C) sites and randomly chosen unoiled B/C reference sites. The samples were analyzed for petroleum hydrocarbons and benthic infaunal community characteristics. This paper focuses on the results of the benthic infaunal community analysis. Analysis of Covariance (ANCOVA) was used to analyze the 1990–1999 infaunal species composition data. Very little effect of oiling was detected in either the analysis of community structure parameters or in individual species abundances. Oiling effects were detected at some sites in 1990 and 1991, but not in 1998 and 1999. Nearly all the change in intertidal community parameters between 1990 and 1999 was attributed to natural interannual variation. The composition of the intertidal community of B/C shores changed over time because of natural factors not related to the spill. A core group of species was found in each of the 4 years. This group of species represented between 9 to 30% of all species identified. Two other groups of species did not co-occur. One group was present in 1990 and 1991, but not in 1998 and 1999; the other group was present in 1998 and 1999, but not in 1990 and 1991. The progressive change in the animal community observed between 1990 and 1999 is very likely related to long-term climatic changes occurring in the study area and not the oil spill. This long-term study demonstrates the importance of study designs that allow separation of oiling effects from natural factors that can affect biological communities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Benjamin Weitzman ◽  
Brenda Konar ◽  
Katrin Iken ◽  
Heather Coletti ◽  
Daniel Monson ◽  
...  

Marine heatwaves are global phenomena that can have major impacts on the structure and function of coastal ecosystems. By mid-2014, the Pacific Marine Heatwave (PMH) was evident in intertidal waters of the northern Gulf of Alaska and persisted for multiple years. While offshore marine ecosystems are known to respond to these warmer waters, the response of rocky intertidal ecosystems to this warming is unclear. Intertidal communities link terrestrial and marine ecosystems and their resources are important to marine and terrestrial predators and to human communities for food and recreation, while simultaneously supporting a growing coastal tourism industry. Given that current climate change projections suggest increased frequency and duration of marine heatwaves, monitoring and understanding the impacts of heatwaves on intertidal habitats is important. As part of the Gulf Watch Alaska Long-Term Monitoring program, we examined rocky intertidal community structure at 21 sites across four regions spanning 1,200 km of coastline: Western Prince William Sound, Kenai Fjords National Park, Kachemak Bay, and Katmai National Park and Preserve. Sites were monitored annually from 2012 to 2019 at mid and low tidal strata. Before-PMH (2012–2014), community structure differed among regions. We found macroalgal foundation species declined during this period mirroring patterns observed elsewhere for subtidal habitat formers during heatwave events. The region-wide shift from an autotroph-macroalgal dominated rocky intertidal to a heterotroph-filter-feeder dominated state concurrent with the changing environmental conditions associated with a marine heatwave event suggests the PMH had Gulf-wide impacts to the structure of rocky intertidal communities. During/after-PMH (2015–2019), similarities in community structure increased across regions, leading to a greater homogenization of these communities, due to declines in macroalgal cover, driven mostly by a decline in the rockweed, Fucus distichus, and other fleshy red algae in 2015, followed by an increase in barnacle cover in 2016, and an increase in mussel cover in 2017. Strong, large-scale oceanographic events, like the PMH, may override local drivers to similarly influence patterns of intertidal community structure.


Sign in / Sign up

Export Citation Format

Share Document