community dynamics
Recently Published Documents


TOTAL DOCUMENTS

2450
(FIVE YEARS 844)

H-INDEX

91
(FIVE YEARS 12)

2022 ◽  
Vol 345 ◽  
pp. 126485
Author(s):  
Jeong Sung Jung ◽  
Balasubramani Ravindran ◽  
Ilavenil Soundharrajan ◽  
Mukesh Kumar Awasthi ◽  
Ki Choon Choi

2022 ◽  
Vol 12 ◽  
Author(s):  
Neža Orel ◽  
Eduard Fadeev ◽  
Katja Klun ◽  
Matjaž Ličer ◽  
Tinkara Tinta ◽  
...  

Coastal zones are exposed to various anthropogenic impacts, such as different types of wastewater pollution, e.g., treated wastewater discharges, leakage from sewage systems, and agricultural and urban runoff. These various inputs can introduce allochthonous organic matter and microbes, including pathogens, into the coastal marine environment. The presence of fecal bacterial indicators in the coastal environment is usually monitored using traditional culture-based methods that, however, fail to detect their uncultured representatives. We have conducted a year-around in situ survey of the pelagic microbiome of the dynamic coastal ecosystem, subjected to different anthropogenic pressures to depict the seasonal and spatial dynamics of traditional and alternative fecal bacterial indicators. To provide an insight into the environmental conditions under which bacterial indicators thrive, a suite of environmental factors and bacterial community dynamics were analyzed concurrently. Analyses of 16S rRNA amplicon sequences revealed that the coastal microbiome was primarily structured by seasonal changes regardless of the distance from the wastewater pollution sources. On the other hand, fecal bacterial indicators were not affected by seasons and accounted for up to 34% of the sequence proportion for a given sample. Even more so, traditional fecal indicator bacteria (Enterobacteriaceae) and alternative wastewater-associated bacteria (Lachnospiraceae, Ruminococcaceae, Arcobacteraceae, Pseudomonadaceae and Vibrionaceae) were part of the core coastal microbiome, i.e., present at all sampling stations. Microbial source tracking and Lagrangian particle tracking, which we employed to assess the potential pollution source, revealed the importance of riverine water as a vector for transmission of allochthonous microbes into the marine system. Further phylogenetic analysis showed that the Arcobacteraceae in our data set was affiliated with the pathogenic Arcobacter cryaerophilus, suggesting that a potential exposure risk for bacterial pathogens in anthropogenically impacted coastal zones remains. We emphasize that molecular analyses combined with statistical and oceanographic models may provide new insights for environmental health assessment and reveal the potential source and presence of microbial indicators, which are otherwise overlooked by a cultivation approach.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 119
Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Antonella Agodi

Google Trends data are an efficient source for analysing internet search behaviour and providing valuable insights into community dynamics and health-related problems. In this article, we aimed to evaluate if Google Trends data could help monitor the COVID-19 vaccination trend over time and if the introduction of COVID-19 vaccines modified the interest of pregnant women in vaccination. Data related to Google internet searches and the number of vaccine doses administered in Italy were used. We found moderate to strong correlations between search volumes of vaccine-related terms and the number of vaccines administered. In particular, a model based on Google Trends with a 3-week lag showed the best performance in fitting the number of COVID-19 vaccinations over time. We also observed that the introduction of COVID-19 vaccines affected the search interest for the argument “vaccination in pregnancy” both quantitatively and qualitatively. There was a significant increase in the search interest after the launch of the COVID-19 vaccination campaign in Italy. Qualitative analysis suggested that this increase was probably due to concerns about COVID-19 vaccines. Thus, our study suggests the benefits of using Google Trends data to predict the number of COVID-19 vaccine doses administered, and to monitor feelings about vaccination.


Author(s):  
Yiqi Cao ◽  
Baiyu Zhang ◽  
Charles W. Greer ◽  
Kenneth Lee ◽  
Qinhong Cai ◽  
...  

The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1500 mL) microcosms without nutrients addition using low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved into the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic based Metagenome Assembled Genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. Importance In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days) whereas exerting insignificant effects in the late stage (50 days), from both substances removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation, and clarified their degradation and antioxidation mechanisms. The findings would help to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit, and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.


2022 ◽  
Vol 9 ◽  
Author(s):  
Bracha Schindler ◽  
Efrat Gavish-Regev ◽  
Tamar Keasar

In order to integrate parasitoid wasps in agroecosystems as biological control agents, we need to understand how insecticides affect the parasitoids in the crops and their surroundings. We investigated the non-target effect of Indoxacarb, an insecticide commonly used against European grapevine moth, on parasitoid wasp communities in vineyards. We focused on characterizing: 1. The dynamics of common wasp species, and 2. Wasp abundance and species richness in the vineyard center, edge, and nearby natural area. Seven vineyards, with neighboring natural areas, were sampled before, and up to 2 weeks after, Indoxacarb applications over 2 years. We expected initial negative effects of spraying in the vineyard with some effect of Indoxacarb drift into the natural habitat, followed by wasp recovery, first in natural areas, then at the vineyard edge and finally in the center. Sticky traps were hung at the vineyard edge and center to evaluate migration into and out of the vineyard. Vacuum sampling was used to obtain parasitoid total abundance and species richness, and the abundances of four common species (43% of the wasps collected). From the vacuum samples we found that total wasp abundance and richness declined after spraying in the vineyards’ margins and center but rose over time in the natural area. Vineyard wasp abundance was restored to pre-spraying levels within 2 weeks. Among the abundant species, Trichogramma sp. and Telenomus sp., which parasitize lepidopteran hosts, declined after spraying, and Trichogramma sp. recovered more quickly than Telenomus sp. Two other abundant species, Lymaenon litoralis and Oligosita sp., did not decline after spraying. In the sticky traps, wasp abundance increased at the vineyard edge but not center after spraying, suggesting that there was migration of wasps at the vineyard edge, into or out of the crop. The results indicate an effect of Indoxacarb on the parasitoid wasp community, particularly on parasitoids of lepidopterans, the target group of Indoxacarb. The results also indicate a potential for recovery of the parasitoid community through migration from neighboring natural vegetation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dónall Eoin Cross ◽  
Amy J. E. Healey ◽  
Niall J. McKeown ◽  
Christopher James Thomas ◽  
Nicolae Adrian Macarie ◽  
...  

AbstractRegional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.


2022 ◽  
Author(s):  
Henning Nottebrock ◽  
Mao-Lun Weng ◽  
Matthew T. Rutter ◽  
Charles B. Fenster

Abstract Using a mechanistic eco-evolutionary trait-based neighborhood-model, we quantify the impact of mutations on intraspecific spatial interactions to better understand mechanisms underlying the maintenance of genetic variation and the potential effects of these evolved interactions on the population dynamics of Arabidopsis thaliana. We use 100 twenty-fifth generation mutation accumulation (MA) lines (genotypes) derived from one founder genotype to study mutational effects on neighbor responses in a field experiment. We created individual-based maps (15,000 individuals), including phenotypic variation, to quantify mutational effects within genotypes versus between genotypes on reproduction and survival. At small-scale (within 80 cm of the focal plant), survival is enhanced but seed-set is decreased when a genotype is surrounded by different genotypes. At large-scale (within 200 cm of the focal plant), seed set is facilitated by different genotypes while the same genotype has either no effect or negative effects. The direction of the interactions among MA lines suggests that at small scale these interactions may contribute to the maintenance of genetic variation and at large scale contribute to the survival of the population. This may suggest, that, mutations potentially have immediate effects on population and community dynamics by influencing the outcome of competitive and faciliatory interactions among conspecifics.


Daedalus ◽  
2022 ◽  
Vol 151 (1) ◽  
pp. 84-96
Author(s):  
Beth E. Richie

Abstract In this essay, I illustrate how discussions of the effects of violence on communities are enhanced by the use of a critical framework that links various microvariables with macro-institutional processes. Drawing upon my work on the issue of violent victimization toward African American women and how conventional justice policies have failed to bring effective remedy in situations of extreme danger and degradation, I argue that a broader conceptual framework is required to fully understand the profound and persistent impact that violence has on individuals embedded in communities that are experiencing the most adverse social injustices. I use my work as a case in point to illustrate how complex community dynamics, ineffective institutional responses, and broader societal forces of systemic violence intersect to further the impact of individual victimization. In the end, I argue that understanding the impact of all forms of violence would be better served by a more intersectional and critical interdisciplinary framework.


Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737382
Author(s):  
Stine Wiborg Dahle ◽  
Kari J.K. Attramadal ◽  
Olav Vadstein ◽  
Hans Ivar Hestdahl ◽  
Ingrid Bakke

Sign in / Sign up

Export Citation Format

Share Document