The nature of short hydrogen bonds

Science ◽  
2021 ◽  
Vol 371 (6525) ◽  
pp. 137.6-138
Author(s):  
Yury Suleymanov
1996 ◽  
Vol 52 (2) ◽  
pp. 323-327 ◽  
Author(s):  
A. Hirano ◽  
Y. Kubozono ◽  
H. Maeda ◽  
H. Ishida ◽  
S. Kashino

For crystals of ammonium hydrogen succinate it is known that the space group is P{\bar 1} with Z = 2 at 293 K and the second-order phase transition occurs around 170 K. X-ray crystal structure analyses above and below 170 K have been carried out in order to study the change in mode of short hydrogen bonds between the hydrogen succinate ions. The space group was determined to be P{\bar 1} at 150 and 190 K by structure analysis. No ordering of the H-atom positions in the short hydrogen bonds occurs by the phase transition. The hydrogen bonds show a decrease in the O...O distances with a decrease in temperature from 290 to 190 K, but no significant change in the geometries between 190 and 150 K. Disorder of the NH4 + ion is not observed at 297, 190 and 150 K. Significant change through the phase transition is found only in the geometry of one of the N—H...O hydrogen bonds between ammonium and hydrogen succinate ions.


2008 ◽  
Vol 73 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Vladimir Leskovac ◽  
Svetlana Trivic ◽  
Draginja Pericin ◽  
Mira Popovic ◽  
Julijan Kandrac

The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78-1.28 ? revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 ? long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short "low-barrier" hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the "low-barrier hydrogen bond" hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 ? long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the "low-barrier hydrogen bond" hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.


1967 ◽  
Vol 0 (1) ◽  
pp. 32b-33 ◽  
Author(s):  
J. C. Speakman

2007 ◽  
Vol 63 (11) ◽  
pp. 1178-1184 ◽  
Author(s):  
S. Z. Fisher ◽  
S. Anderson ◽  
R. Henning ◽  
K. Moffat ◽  
P. Langan ◽  
...  

2019 ◽  
Vol 10 (33) ◽  
pp. 7734-7745 ◽  
Author(s):  
Shengmin Zhou ◽  
Lu Wang

Short hydrogen bonds are ubiquitous in biological macromolecules and exhibit distinctive proton potential energy surfaces and proton sharing properties.


Sign in / Sign up

Export Citation Format

Share Document