Direct synthesis of adipic acid esters via palladium-catalyzed carbonylation of 1,3-dienes

Science ◽  
2019 ◽  
Vol 366 (6472) ◽  
pp. 1514-1517 ◽  
Author(s):  
Ji Yang ◽  
Jiawang Liu ◽  
Helfried Neumann ◽  
Robert Franke ◽  
Ralf Jackstell ◽  
...  

The direct carbonylation of 1,3-butadiene offers the potential for a more cost-efficient and environmentally benign route to industrially important adipic acid derivatives. However, owing to the complex reaction network of regioisomeric carbonylation and isomerization pathways, a selective practical catalyst for this process has thus far proven elusive. Here, we report the design of a pyridyl-substituted bidentate phosphine ligand (HeMaRaphos) that, upon coordination to palladium, catalyzes adipate diester formation from 1,3-butadiene, carbon monoxide, and butanol with 97% selectivity and 100% atom-economy under industrially viable and scalable conditions (turnover number > 60,000). This catalyst system also affords access to a variety of other di- and triesters from 1,2- and 1,3-dienes.

Synthesis ◽  
2021 ◽  
Author(s):  
Mingzhong Cai ◽  
Shengyong You ◽  
Rongli Zhang

AbstractA magnetically recyclable palladium-catalyzed formylation of aryl iodides under CO gas-free conditions has been developed by using a bidentate phosphine ligand-modified magnetic nanoparticles-anchored­ palladium(II) complex [2P-Fe3O4@SiO2-Pd(OAc)2] as catalyst, yielding a wide variety of aromatic aldehydes in moderate to excellent yields. Here, formic acid was employed as both the CO source and the hydrogen donor with iodine and PPh3 as the activators. This immobilized palladium catalyst can be obtained via a simple preparative procedure and can be facilely recovered simply by using an external magnetic field, and reused at least 9 times without any apparent loss of catalytic activity.


2020 ◽  
Author(s):  
Richard Liu ◽  
Joseph Dennis ◽  
Stephen L. Buchwald

Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues associated with heterogeneous reaction conditions. Still, homogeneous C–N cross-coupling approaches cannot yet employ bases as weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, despite some advantages of such systems over analogous Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines using triethylamine (TEA) as base. The method is tolerant of sterically-congested coupling partners, as well as those bearing base- and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the resultant Ni(II)–amido complex. Moreover, we determined that precluding Lewis acid-base complexation between the Ni catalyst and the base, due to steric factors, is important for avoiding catalyst inhibition.


1992 ◽  
Vol 57 (13) ◽  
pp. 3558-3563 ◽  
Author(s):  
Walter Cabri ◽  
Ilaria Candiani ◽  
Angelo Bedeschi ◽  
Roberto Santi

2020 ◽  
Author(s):  
Richard Liu ◽  
Joseph Dennis ◽  
Stephen L. Buchwald

Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues associated with heterogeneous reaction conditions. Still, homogeneous C–N cross-coupling approaches cannot yet employ bases as weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, despite some advantages of such systems over analogous Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines using triethylamine (TEA) as base. The method is tolerant of sterically-congested coupling partners, as well as those bearing base- and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the resultant Ni(II)–amido complex. Moreover, we determined that precluding Lewis acid-base complexation between the Ni catalyst and the base, due to steric factors, is important for avoiding catalyst inhibition.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1761
Author(s):  
Aliya K. Mazitova ◽  
Guliya K. Aminova ◽  
Irina N. Vikhareva

The growing anthropogenic load on the lithosphere is currently characterized by the alienation of huge areas for solid domestic waste. One of the most common pollutants is traditional plastics with a degradation period of over 100 years. In connection with the increasing environmental requirements, polymer materials, along with a high set of technological and operational parameters, must be environmentally friendly and biodegradable. The development of polymer composite materials that undergo accelerated physicochemical and biological changes in the natural environment due to the introduction of biodegradable additives is one of the potential methods for processing synthetic materials and ensures the release of significant areas of fertile soils and lands from the steadily increasing amount of polymer waste. The use of adipic acid esters as PVC plasticizers contributes to the production of biodegradable composites. The article describes a method for obtaining new esters of adipic acid, presents the results of studying their properties for practical use in PVC composites, and assesses the economic efficiency of preventing damage to the environment when using them.


2003 ◽  
Vol 345 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Jörg Zimmermann ◽  
Igor Tkatchenko ◽  
Peter Wasserscheid

Sign in / Sign up

Export Citation Format

Share Document