polymer materials
Recently Published Documents


TOTAL DOCUMENTS

3491
(FIVE YEARS 1120)

H-INDEX

65
(FIVE YEARS 14)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Gregor Primc ◽  
Domen Paul ◽  
Miran Mozetič

Carbon nanowalls are promising materials for various electrochemical devices due to their chemical inertness, desirable electrical conductivity, and excellent surface-to-mass ratio. Standard techniques, often based on plasma-assisted deposition using gaseous precursors, enable the synthesis of top-quality carbon nanowalls, but require long deposition times which represents a serious obstacle for mass applications. Here, an alternative deposition technique is presented. The carbon nanowalls were synthesized on titanium substrates using various polymers as solid precursors. A solid precursor and the substrate were mounted into a low-pressure plasma reactor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H-mode at the power of 500 W. Spontaneous growth of carbon nanomaterials was observed for a variety of polymer precursors. The best quality of carbon nanowalls was obtained using aliphatic polyolefins. The highest growth rate of a thin film of carbon nanowalls of about 200 nm/s was observed. The results were explained by different degradation mechanisms of polymers upon plasma treatment and the surface kinetics.


Author(s):  
Anton Kozmai ◽  
Natalia Pismenskaya ◽  
Victor Nikonenko

Ion-exchange membranes (IEMs) are widely used in desalination, waste water treatment, food, energy production and other applications. There is a strong demand for cost-effective IEMs characterized by high selective transport of ions of a certain sign of charge. In this paper, we simulate the experimental results of V. Sarapulova et al. (IJMS 2021) on the modification of an inexpensive anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages including keeping the membrane at a low temperature, applying a PFSI solution on its surface, and subsequent drying it at an elevated temperature. We apply the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (4 m) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which has a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane becomes comparable in its transport characteristics with more expensive IEMs available on the market.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Cheng Chi ◽  
Meng An ◽  
Xin Qi ◽  
Yang Li ◽  
Ruihan Zhang ◽  
...  

AbstractThere has been increasing interest in the emerging ionic thermoelectric materials with huge ionic thermopower. However, it’s challenging to selectively tune the thermopower of all-solid-state polymer materials because the transportation of ions in all-solid-state polymers is much more complex than those of liquid-dominated gels. Herein, this work provides all-solid-state polymer materials with a wide tunable thermopower range (+20~−6 mV K−1), which is different from previously reported gels. Moreover, the mechanism of p-n conversion in all-solid-state ionic thermoelectric polymer material at the atomic scale was presented based on the analysis of Eastman entropy changes by molecular dynamics simulation, which provides a general strategy for tuning ionic thermopower and is beneficial to understand the fundamental mechanism of the p-n conversion. Furthermore, a self-powered ionic thermoelectric thermal sensor fabricated by the developed p- and n-type polymers demonstrated high sensitivity and durability, extending the application of ionic thermoelectric materials.


2022 ◽  
pp. 089270572110633
Author(s):  
Hamed Tanabi

Short fiber-reinforced 3D printed components are high performance materials with a wide range of potential applications in various industries ranging from aerospace to automotive. Mechanical characterization of 3D printed short carbon fiber polyethylene terephthalate and acrylonitrile butadiene styrene parts are presented under the application of shear load in this study. The anisotropy properties of both composite and polymer materials were investigated by printing samples at two different orientations, using fused deposition modeling (FDM) technique. The fabricated samples were subjected to tensile and shearing loads while 2D digital image correlation (DIC) was used to measure full-field strain on the specimen. The obtained results revealed a noticeable anisotropy in shear properties as the function of printing orientation. Moreover, it found that using carbon fiber-reinforced PET results in higher elastic modulus, tensile, and shear strengths up to 180%, 230%, and 40% compared to ABS.


2022 ◽  
Author(s):  
K.G. Pugin

Abstract. The research presented in the article shows the possibility of using some polymer materials in the composition of asphalt concrete. The analysis of scientific works in the field of asphalt concrete design shows the efficiency of using plastic waste to obtain asphalt concrete with specified physical, mechanical and operational properties. This technology allows not only to reduce the amount of accumulated plastic waste, but also to improve the condition of highways by increasing the strength of asphalt concrete. Polymers PP and LDPE were selected for the study. As PP samples, we used a nonwoven material used for the production of disposable medical masks, which is suitable for creating linear or dispersed reinforcement of asphalt concrete. LDPE was used as the second polymer sample. The obtained asphalt concrete samples differ from the traditional composition by their increased compressive strength at high temperatures while maintaining plasticity at low temperatures.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 292
Author(s):  
Timothy Bo Yuan Chen ◽  
Ivan Miguel De Cachinho Cordeiro ◽  
Anthony Chun Yin Yuen ◽  
Wei Yang ◽  
Qing Nian Chan ◽  
...  

Building polymers implemented into building panels and exterior façades have been determined as the major contributor to severe fire incidents, including the 2017 Grenfell Tower fire incident. To gain a deeper understanding of the pyrolysis process of these polymer composites, this work proposes a multi-scale modelling framework comprising of applying the kinetics parameters and detailed pyrolysis gas volatiles (parent combustion fuel and key precursor species) extracted from Molecular Dynamics models to a macro-scale Computational Fluid Dynamics fire model. The modelling framework was tested for pure and flame-retardant polyethylene systems. Based on the modelling results, the chemical distribution of the fully decomposed chemical compounds was realised for the selected polymers. Subsequently, the identified gas volatiles from solid to gas phases were applied as the parent fuel in the detailed chemical kinetics combustion model for enhanced predictions of toxic gas, charring, and smoke particulate predictions. The results demonstrate the potential application of the developed model in the simulation of different polymer materials without substantial prior knowledge of the thermal degradation properties from costly experiments.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
M. N. M. Azlin ◽  
R. A. Ilyas ◽  
M. Y. M. Zuhri ◽  
S. M. Sapuan ◽  
M. M. Harussani ◽  
...  

Sustainable technologies are vital due to the efforts of researchers and investors who have allocated significant amounts of money and time to their development. Nowadays, 3D printing has been accepted by the main industry players, since its first establishment almost 30 years ago. It is obvious that almost every industry is related to technology, which proves that technology has a bright future. Many studies have shown that technologies have changed the methods for developing particular products. Three-dimensional printing has evolved tremendously, and currently, many new types of 3D printing machines have been introduced. In this paper, we describe the historical development of 3D printing technology including its process, types of printing, and applications on polymer materials.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 67
Author(s):  
Ecaterina Matei ◽  
Cristina Ileana Covaliu-Mierla ◽  
Anca Andreea Ţurcanu ◽  
Maria Râpă ◽  
Andra Mihaela Predescu ◽  
...  

This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.


Sign in / Sign up

Export Citation Format

Share Document