Polymer Materials
Recently Published Documents





2021 ◽  
Vol 2021 ◽  
pp. 1-10
Xijun Zhang ◽  
Chaojie Wang ◽  
Han Tian ◽  
Mingsheng Shi

The concentric pushing method was used to study the bonding properties between polymer and concrete. This paper studied the influence of polymer density, environmental temperature, and moisture content of concrete between polymer and concrete on the bond strength. The results indicated that the bond failure of specimens occurred mainly when the polymer was pushed out. Furthermore, increasing the polymer density increases the bond strength at the polymer-concrete interface but decreases as the moisture content of the concrete increases. The environmental temperature affects the curing time, and the bond strength increases with increasing temperature. Under the same condition, the bond strength was influenced by the roughness of the interface. This study provides references for the construction design and enhances polymer materials and matrix application for repairing cracks in concrete dams.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Irina N. Vikhareva ◽  
Evgeniya A. Buylova ◽  
Gulnara U. Yarmuhametova ◽  
Guliya K. Aminova ◽  
Aliya K. Mazitova

Plastic is one of the most demanded materials on the planet, and the increasing consumption of which contributes to the accumulation of significant amounts of waste based on it. For this reason, a new approach to the development of these materials has been formed: the production of polymers with constant operational characteristics during the period of consumption and capable of then being destroyed under the influence of environmental factors and being involved in the metabolic processes of natural biosystems. The paper outlines the prerequisites for the development of the field of creating biodegradable composite materials, as well as the main technical solutions for obtaining such polymeric materials. The main current solutions for reducing and regulating the degradation time of polymer materials are presented. The most promising ways of further development of the field of bioplastics production are described. Common types of polymers based on renewable raw materials, composites with their use, and modified materials from natural and synthetic polymers are considered.

Fire Safety ◽  
2021 ◽  
Vol 38 ◽  
pp. 18-23
P. Pastuhov ◽  
V. Petrovskii ◽  
O. Lavrenyuk ◽  
B. Mykhalitchko

Introduction. The rapid growth of production rates and the use of polymer materials in various fields has brought about an increase in the number of fires caused by the ignition of polymer products. Among the most common polymer materials are materials based on epoxy resins. They are used in such industries as construction, electrical engineering and radio engineering, shipbuilding, mechanical engineering, including automotive, aerospace and rocketry, etc. Due to its organic structure, high content of carbon and hydrogen, epoxy polymers are very combustible. Their combustion is characterized by high temperature and more flame propagation rate. And it is accompanied by significant smoke formation and the release of large amounts of toxic products. Therefore, the search for new ways to reduce combustibility and maintain the proper level of performance is one of the priorities in the development and implementation of new epoxy polymer materials in various fields. Purpose. The work aims to obtain epoxy-amine composites and to discover the effect of flame retardant-hardener on their fire hazard and physical and mechanical properties.Methods. In work used Modern research methods. The flame propagation rate was determined by UL94, the coefficient of smoke was measured by ASTM E662-19, physical and mechanical properties were evaluated by measuring parameters such as surface hardness, tensile strength, water absorption and chemical resistance.Results. The parameters of fire danger of epoxy-amine composites with different content of flame retardant (0, 5, 16 and 80 mass parts) were studied. The results of experimental studies showed that the flame propagation rate and the smoke formation coefficient in the mode of smouldering and combustion are minimal for epoxy-amine composites containing 16 and 80 mass parts of flame retardant. Such compositions have higher surface hardness and tensile strength. And they also well as more resistant to water and aggressive environments compared to unmodified ones.Conclusion. The paper presents a simple and commercially attractive method of obtaining epoxy-amine composites con-taining different amounts of flame retardant – copper(II) sulfate. It is necessary, the obtained samples of the composites are homogeneous in structure. These should be considered as individual chemicals, not as mixtures. Chemical bonding of all components of the composites, namely the appearance of additional (compared to the unmodified composite) Cu(II)–N coordination bonds in the polymer framework DGEBA/DETA-CuSO4, is reflected in the enhanced physical and mechanical properties and fire hazard reduction for this type of composite materials.

Ali Shahrokhinia ◽  
Priyanka Biswas ◽  
James F. Reuther

2021 ◽  
Vol 58 (2) ◽  
pp. 71-79
Claudia-Mihaela Gorovei ◽  
Alina-Mihaela Ceoromila ◽  
Vasile Bria ◽  
Adrian Circiumaru ◽  
Iulian-Gabriel Birsan

An additive is a substance, which when incorporated into polymer materials might lead at improvements on the electrical, thermal or mechanical properties of finished products in dependence of their applications, such as automotive, electronics, packaging and consumer goods. This study is based on the idea of using inorganic agents to change the basic properties of an epoxy resin. The well-known plasticizer 1-methyl-2-pyrrolidinone (NMP) was used to solve the inorganic agents and the mixture of obtained solutions was added, in certain amounts, into the epoxy resin prior the hardener of the epoxy system. The idea is to test the hypothesis of forming of ceramic nanostructures into the polymer structure based on local chemical interaction between solved inorganic compounds in certain conditions. The present paper concerns with the effect of changes on the mechanical properties of the epoxy resin.

2021 ◽  
Vol 15 (4) ◽  
pp. 512-520
Ryota Uchiyama ◽  
Yuki Inoue ◽  
Fumihiro Uchiyama ◽  
Takashi Matsumura ◽  

High quality surfaces with transparency are required for manufacturing of plastic products. In cutting of polymer materials, surface quality is sometimes deteriorated by tarnish and/or unequal spaces of area on a surface. The cutting parameters should be determined through understanding of surface finish characteristics. This paper presents an optimization approach in milling of polycarbonate with polycrystal diamond tools in terms of the surface finish. Surfaces are finished with changing the feed rate and the clearance angle of the tool. The surface finishes, then, were observed to classify the deterioration type into welding, adhesion, and the unequal space of cutter marks with measurement of the surface profiles. The measured surface roughnesses are decomposed into the theoretical/geometrical term and the irregular term induced by the thermal and the dynamic effects. A map is presented to characterize the irregular term for the feed rates and the clearance angles. Because the surface roughnesses are measured at discrete sets of the cutting parameters in the actual cutting tests, the process design cannot be conducted to optimize the operation parameters. Therefore, a neural network is applied to associate the cutting parameters with the irregular term in the map. An approach is presented to determine the number of hidden nodes/units in the design of the neural network. Three prominent areas of welding, adhesion, and unequal spaces of the cutter marks, appear in the map of irregular roughness. The map of the surface roughness is made to optimize the cutting process. The applicable feed rates and clearance angles are determined for the tolerable surface roughnesses. The gradient information in the map is used to evaluate the stability/robustness of the surface quality for changing the parameters. The optimum parameters were determined to minimize the gradient information in the applicable feed rates and clearance angles.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2205
Han Liang ◽  
Jun Han ◽  
Chen Cao ◽  
Shuangwen Ma

Thin spray-on liner (TSL) is a surface protection technology used by spraying a polymer film, which is widely used for mine airtightness and waterproofing. A reinforcing TSL can replace steel mesh, which is a new method for roadway support. This paper reviews the development of a reinforcing TSL. Considering the deterioration of geological conditions in deep underground mining and the demand for reinforcing automation, two kinds of polymeric reinforcing TSL (RPTSL) materials are developed. The mechanical characteristics of the new TSL materials are studied experimentally. Results show that the average compressive strength, tensile strength, cohesion, and internal friction angle of the two TSL materials are 52 and 32 MPa, 12 and 8 MPa, 6.2 and 17.2 MPa, and 33.6° and 25.9°, respectively. The bonding strength between the two materials and coal is greater than the tensile strength of coal itself, and the mechanical properties of the material for comparison are lower than those of both materials. Based on the TSL support mechanism, we examine the application of the two TSL materials to the mining environment and compare the mechanical properties of polymer materials and cement-based materials. The advantages of polymer materials include versatile mechanical properties, good adhesion, and high early strength. This study provides a new support material to replace steel mesh for roadway surface support, which satisfies the needs of different surface support designs under complex geological conditions, and promotes the automation of roadway support.

Export Citation Format

Share Document