Point and diffuse nutrient emissions and loads in the transboundary Danube River Basin - II. Long-term changes

River Systems ◽  
2005 ◽  
Vol 16 (1-2) ◽  
pp. 221-247 ◽  
Author(s):  
Horst Behrendt ◽  
Matthias Zessner
2021 ◽  
Vol 24 (s1) ◽  
pp. 37-44
Author(s):  
Pavla Pekárová ◽  
Jakub Mészáros ◽  
Pavol Miklánek ◽  
Ján Pekár ◽  
Stevan Prohaska ◽  
...  

Abstract The long-term runoff variability is identified to consist of the selected large rivers with long-term data series in the Danube River Basin. The rivers were selected in different regions of the Danube River Basin and have a large basin area (Danube: Bratislava gauge with 131,338 km2; Tisza: Senta with 141,715 km2; and Sava: Sremska Mitrovica with 87,966 km2). We worked with the station Danube: Reni in the delta as well. A spectral analysis was used to identify the long-term variability of three different types of time series: (1) Average annual discharge time series, (2) Minimum annual discharge time series and (3) Maximum annual discharge time series. The results of the study can be used in a long-term forecast of the runoff regime in the future.


2005 ◽  
Vol 51 (3-4) ◽  
pp. 283-290 ◽  
Author(s):  
H. Schreiber ◽  
H. Behrendt ◽  
L.T. Constantinescu ◽  
I. Cvitanic ◽  
D. Drumea ◽  
...  

Nutrient emissions by point and diffuse sources were estimated for 388 sub-catchments of the Danube river basin for the period 1998–2000 by means of the Model MONERIS. For nitrogen total emissions of 684 kt/a N were estimated for the Danube basin. 80% of these emissions were caused by diffuse sources (mainly groundwater, urban areas and tile drainage). For phosphorus the emission was 57 kt/a P, with a contribution of diffuse sources to this sum of 58%. The comparison of calculated and observed loads shows that the mean deviation for the investigated sub-catchments of the Danube river basin is 20% for dissolved inorganic nitrogen and 34% for phosphorus. The spatial resolution of the emission calculations allows the identification of regional hot spots and the derivation of specific regional measures to reduce the emissions into the Danube and consequently into the Western Black Sea.


2017 ◽  
Vol 65 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Milan Stojković ◽  
Jasna Plavšić ◽  
Stevan Prohaska

AbstractThe short-term predictions of annual and seasonal discharge derived by a modified TIPS (Tendency, Intermittency, Periodicity and Stochasticity) methodology are presented in this paper. The TIPS method (Yevjevich, 1984) is modified in such a way that annual time scale is used instead of daily. The reason of extracting a seasonal component from discharge time series represents an attempt to identify the long-term stochastic behaviour. The methodology is applied for modelling annual discharges at six gauging stations in the middle Danube River basin using the observed data in the common period from 1931 to 2012. The model performance measures suggest that the modelled time series are matched reasonably well. The model is then used for the short-time predictions for three annual step ahead (2013–2015). The annual discharge predictions of larger river basins for moderate hydrological conditions show reasonable matching with records expressed as the relative error from −8% to +3%. Irrespective of this, wet and dry periods for the aforementioned river basins show significant departures from annual observations. Also, the smaller river basins display greater deviations up to 26% of the observed annual discharges, whereas the accuracy of annual predictions do not strictly depend on the prevailing hydrological conditions.


Sign in / Sign up

Export Citation Format

Share Document