A new Ophiopsiformes (Halecomorphi, Neopterygii) from the Upper Jurassic of Nusplingen (Germany) and a comparison of Kimmeridgian Ophiopsiformes from Nusplingen with Tithonian taxa from the Solnhofen Archipelago

2021 ◽  
Vol 302 (3) ◽  
pp. 299-329
Author(s):  
Martin Ebert
Keyword(s):  
Author(s):  
D. A. Petrochenkov

Fossils of marine reptiles are a new jewelry and ornamental material and collected in the Ulyanovsk region from the Upper Jurassic deposits. They consist of (wt. %): calcite — 52, apatite — 24 and pyrite — 23, and also gypsum presents. The contents of radioactive and carcinogenic elements are close to background. The original bone structure of reptiles is preserved. Apatite replaces the bone tissue of marine reptiles, forming a cellular framework. According to the chemical composition, apatite refers to fluorohydroxyapatite with an increased Sr content. The size of the crystals is finely-dispersed. Calcite and pyrite fill the central parts of the cells. Calcite crystals of isometric and elongated shape, 0,01—0,05 mm in size, form blocks up to 0,3 mm during intergrowth. Calcite fills thin, discontinuous veins along the contour of cells with a width of up to 0,03 mm. In calcite, among the impurity elements, there are (wt. %, on the average): Mg — 0,30, Mn — 0,39 and Fe — 0,96. Pyrite forms a dispersed impregnation in calcite and apatite, content of impurities is, wt. %: Ni — up to 0,96 and Cu — up to 0,24. On technological and decorative characteristics of fossils of sea reptiles of Ulyanovsk region are qualitative jewelry and ornamental materials of biomineral group, allowing to make a wide assortment of jewelry and souvenir products.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Sign in / Sign up

Export Citation Format

Share Document