scholarly journals Novel Method for Simultaneous Quantification of Phenotypic Resistance to Maturation, Protease, Reverse Transcriptase, and Integrase HIV Inhibitors Based on 3′Gag(p2/p7/p1/p6)/PR/RT/INT-Recombinant Viruses: a Useful Tool in the Multitarget Era of Antiretroviral Therapy

2011 ◽  
Vol 55 (8) ◽  
pp. 3729-3742 ◽  
Author(s):  
Jan Weber ◽  
Ana C. Vazquez ◽  
Dane Winner ◽  
Justine D. Rose ◽  
Doug Wylie ◽  
...  

ABSTRACTTwenty-six antiretroviral drugs (ARVs), targeting five different steps in the life cycle of the human immunodeficiency virus type 1 (HIV-1), have been approved for the treatment of HIV-1 infection. Accordingly, HIV-1 phenotypic assays based on common cloning technology currently employ three, or possibly four, different recombinant viruses. Here, we describe a system to assess HIV-1 resistance to all drugs targeting the three viral enzymes as well as viral assembly using a single patient-derived, chimeric virus. Patient-derived p2-INT (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) products were PCR amplified as a single fragment (3,428 bp) or two overlapping fragments (1,657 bp and 2,002 bp) and then recombined into a vector containing a near-full-length HIV-1 genome with theSaccharomyces cerevisiaeuracil biosynthesis gene (URA3) replacing the 3,428 bp p2-INT segment (Dudley et al., Biotechniques 46:458–467, 2009). P2-INT-recombinant viruses were employed in drug susceptibility assays to test the activity of protease (PI), nucleoside/nucleotide reverse transcriptase (NRTI), nonnucleoside reverse transcriptase (NNRTI), and integrase strand-transfer (INSTI) inhibitors. Using a single standardized test (ViralARTS HIV), this new technology permits the rapid and automated quantification of phenotypic resistance for all known and candidate antiretroviral drugs targeting all viral enzymes (PR, RT, including polymerase and RNase H activities, and IN), some of the current and potential assembly inhibitors, and any drug targeting Pol or Gag precursor cleavage sites (relevant for PI and maturation inhibitors) This novel assay may be instrumental (i) in the development and clinical assessment of novel ARV drugs and (ii) to monitor patients failing prior complex treatment regimens.

2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


2013 ◽  
Vol 57 (6) ◽  
pp. 2654-2663 ◽  
Author(s):  
Michael E. Abram ◽  
Rebecca M. Hluhanich ◽  
Derrick D. Goodman ◽  
Kristen N. Andreatta ◽  
Nicolas A. Margot ◽  
...  

ABSTRACTElvitegravir (EVG) is an effective HIV-1 integrase (IN) strand transfer inhibitor (INSTI) in advanced clinical development. Primary INSTI resistance-associated mutations (RAMs) at six IN positions have been identified in HIV-1-infected patients failing EVG-containing regimens in clinical studies: T66I/A/K, E92Q/G, T97A, S147G, Q148R/H/K, and N155H. In this study, the effect of these primary IN mutations, alone and in combination, on susceptibility to the INSTIs EVG, raltegravir (RAL), and dolutegravir (DTG); IN enzyme activities; and viral replication fitness was characterized. Recombinant viruses containing the six most common mutations exhibited a range of reduced EVG susceptibility: 92-fold for Q148R, 30-fold for N155H, 26-fold for E92Q, 10-fold for T66I, 4-fold for S147G, and 2-fold for T97A. Less commonly observed primary IN mutations also showed a range of reduced EVG susceptibilities: 40- to 94-fold for T66K and Q148K and 5- to 10-fold for T66A, E92G, and Q148H. Some primary IN mutations exhibited broad cross-resistance between EVG and RAL (T66K, E92Q, Q148R/H/K, and N155H), while others retained susceptibility to RAL (T66I/A, E92G, T97A, and S147G). Dual combinations of primary IN mutations further reduced INSTI susceptibility, replication capacity, and viral fitness relative to either mutation alone. Susceptibility to DTG was retained by single primary IN mutations but reduced by dual mutation combinations with Q148R. Primary EVG RAMs also diminished IN enzymatic activities, concordant with their structural proximity to the active site. Greater reductions in viral fitness of dual mutation combinations may explain why some primary INSTI RAMs do not readily coexist on the same HIV-1 genome but rather establish independent pathways of resistance to EVG.


Biochemistry ◽  
1994 ◽  
Vol 33 (46) ◽  
pp. 13817-13823 ◽  
Author(s):  
James A. Peliska ◽  
Shankar Balasubramanian ◽  
David P. Giedroc ◽  
Stephen J. Benkovic

1998 ◽  
Vol 42 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Kurt Hertogs ◽  
Marie-Pierre de Béthune ◽  
Veronica Miller ◽  
Tania Ivens ◽  
Patricia Schel ◽  
...  

ABSTRACT Combination therapy with protease (PR) and reverse transcriptase (RT) inhibitors can efficiently suppress human immunodeficiency virus (HIV) replication, but the emergence of drug-resistant variants correlates strongly with therapeutic failure. Here we describe a new method for high-throughput analysis of clinical samples that permits the simultaneous detection of HIV type 1 (HIV-1) phenotypic resistance to both RT and PR inhibitors by means of recombinant virus assay technology. HIV-1 RNA is extracted from plasma samples, and a 2.2-kb fragment containing the entire HIV-1 PR- and RT-coding sequence is amplified by nested reverse transcription-PCR. The pool of PR-RT-coding sequences is then cotransfected into CD4+ T lymphocytes (MT4) with the pGEMT3ΔPRT plasmid from which most of the PR (codons 10 to 99) and RT (codons 1 to 482) sequences are deleted. Homologous recombination leads to the generation of chimeric viruses containing PR- and RT-coding sequences derived from HIV-1 RNA in plasma. The susceptibilities of the chimeric viruses to all currently available RT and/or PR inhibitors is determined by an MT4 cell–3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based cell viability assay in an automated system that allows high sample throughput. The profile of resistance to all RT and PR inhibitors is displayed graphically in a single PR-RT-Antivirogram. This assay system facilitates the rapid large-scale phenotypic resistance determinations for all RT and PR inhibitors in one standardized assay.


Author(s):  
Sanjeev Kumar Singh ◽  
Mohd. Aqueel Khan ◽  
Krishna Kant Gupta

Background: The HIV-1 pandemic is undoubtedly the major public-health crisis of our time. The extensive research on HIV has deepened our understanding of its pathogenesis and transmission dynamics. Some new entity molecules have been approved by the FDA for HIV treatment but till now protective vaccine remains elusive. Scientists are targeting many important proteins of HIV-1; gp41, gp120, CCR5 coreceptor, integrase, reverse transcriptase and protease. Few compounds are used as nucleotide analogues to stop HIV replication. Altogether, these compounds and their derivatives specifically block HIV entry and DNA replication. Using ADMET studies, people are working on these compounds to reduce toxicity and increase potency. Objective: Our main aim is to discuss the Pharmacokinetics properties of 23 important FDA antiretroviral drugs used for the treatment of HIV-1 infections. Methods: We have searched literature related to pharmacokinetics properties in PubMed, Google Scholar search engine. Conclusion: Here, we have reviewed the pharmacokinetic properties such as absorption, bioavailability, distribution, metabolism, and excretion, of important 23 FDA approved drugs. The drugs namely Fuzeon, Selzentry, Complera, Epivir, Retrovir, Emtriva, Ziagen, Edurant, Intelence, Pifeltro, Sustiva, Viramune, Isentress, Genvoya, Tivicay, Reyataz, Prezista, Lexiva, Invirase, Aptivus etc. are classified into five major classes: fusion inhibitors, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs), Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), Integrase Strand transfer inhibitors (INSTIs) and Protease inhibitors (PIs). This Review may helpful for the future development of potent antiretroviral drugs with improved pharmacokinetic properties.


2021 ◽  
Vol 28 ◽  
Author(s):  
Valentina Noemi Madia ◽  
Antonella Messorea ◽  
Alessandro De Leo ◽  
Valeria Tudino ◽  
Ivano Pindinello ◽  
...  

: Multiple combination of antiretroviral drugs has remarkably improved the treatment of HIV-1 infection. However, life-long treatments and drug resistance are a still open issue that requires continuous efforts for identification of novel antiviral drugs. Background: the reverse transcriptase-associated ribonuclease H (RNase H) hydrolyzes the HIV genome to allow synthesizing viral DNA. Currently, no RNase H inhibitors (RHIs) have reached the clinical phase. Therefore, RNase H can be defined as an attractive target for drug design. Objective: despite the wealth of information available for RNase H domain, the development of RHIs with high specificity and low cellular toxicity has been disappointing. However, it is now becoming increasingly evident that reverse transcriptase is a highly versatile enzyme, undergoing major structural alterations to complete its catalysis, and that exists a close spatial and temporal interplay between reverse transcriptase polymerase and RNase H domains. This review sums up the present dares in targeting RNase H encompassing the challenges in selectively inhibiting RNase H vs polymerase and/or HIV-1 integrase and the weak antiviral activity of active site inhibitors, probably for a substrate barrier that impedes small molecules to reach the targeted site. Moreover, focus is given on the most recent progresses in the field of medicinal chemistry that have led to the identification of several small molecules as RHIs in the last few years. Conclusion: RHIs could be a new class of drugs with novel mechanism of action highly precious for the treatment of resistant HIV strains.


2018 ◽  
Vol 92 (13) ◽  
Author(s):  
Paul L. Boyer ◽  
Steven J. Smith ◽  
Xue Zhi Zhao ◽  
Kalyan Das ◽  
Kevin Gruber ◽  
...  

ABSTRACT We tested three compounds for their ability to inhibit the RNase H (RH) and polymerase activities of HIV-1 reverse transcriptase (RT). A high-resolution crystal structure (2.2 Å) of one of the compounds showed that it chelates the two magnesium ions at the RH active site; this prevents the RH active site from interacting with, and cleaving, the RNA strand of an RNA-DNA heteroduplex. The compounds were tested using a variety of substrates: all three compounds inhibited the polymerase-independent RH activity of HIV-1 RT. Time-of-addition experiments showed that the compounds were more potent if they were bound to RT before the nucleic acid substrate was added. The compounds significantly inhibited the site-specific cleavage required to generate the polypurine tract (PPT) RNA primer that initiates the second strand of viral DNA synthesis. The compounds also reduced the polymerase activity of RT; this ability was a result of the compounds binding to the RH active site. These compounds appear to be relatively specific; they do not inhibit either Escherichia coli RNase HI or human RNase H2. The compounds inhibit the replication of an HIV-1-based vector in a one-round assay, and their potencies were only modestly decreased by mutations that confer resistance to integrase strand transfer inhibitors (INSTIs), nucleoside analogs, or nonnucleoside RT inhibitors (NNRTIs), suggesting that their ability to block HIV replication is related to their ability to block RH cleavage. These compounds appear to be useful leads that can be used to develop more potent and specific compounds. IMPORTANCE Despite advances in HIV-1 treatment, drug resistance is still a problem. Of the four enzymatic activities found in HIV-1 proteins (protease, RT polymerase, RT RNase H, and integrase), only RNase H has no approved therapeutics directed against it. This new target could be used to design and develop new classes of inhibitors that would suppress the replication of the drug-resistant variants that have been selected by the current therapeutics.


1997 ◽  
Vol 41 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
C Shi ◽  
J W Mellors

We have developed a new recombinant retroviral system in which a library of infectious molecular clones of human immunodeficiency virus type 1 (HIV-1) is constructed with reverse transcriptase (RT) genes derived from viral RNA sequences in plasma. HIV-1 RT is amplified from plasma HIV-1 RNA by nested RT-PCR and cloned into a RT-defective HIV-1 proviral vector (xxLAI-np), generating 10(3) to 10(4) recombinant proviral clones from each reaction. The bulk cloning products or individual molecular clones are transfected into MT-2 cells to generate infectious virus. The resultant viruses are assayed for drug susceptibility in CD4+ cell lines to determine either the dominant phenotype of the recombinant virus mixture or the phenotypes of the individual viral clones. DNA sequencing of the cloned RT genes can identify mutations associated with phenotypic resistance of clonal mixtures or individual clones. This method can be used to rapidly detect the in vivo emergence of HIV-1 quasispecies resistant to RT inhibitors.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1070
Author(s):  
Supang A. Martin ◽  
Patricia A. Cane ◽  
Deenan Pillay ◽  
Jean L. Mbisa

Integrase strand transfer inhibitors (InSTIs) are recommended agents in first-line combination antiretroviral therapy (cART). We examined the evolution of drug resistance mutations throughout HIV-1 pol and the effects on InSTI susceptibility and viral fitness. We performed single-genome sequencing of full-length HIV-1 pol in a highly treatment-experienced patient, and determined drug susceptibility of patient-derived HIV-1 genomes using a phenotypic assay encompassing full-length pol gene. We show the genetic linkage of multiple InSTI-resistant haplotypes containing major resistance mutations at Y143, Q148 and N155 to protease inhibitor (PI) and reverse transcriptase inhibitor (RTI) resistance mutations. Phenotypic analysis of viruses expressing patient-derived IN genes with eight different InSTI-resistant haplotypes alone or in combination with coevolved protease (PR) and RT genes exhibited similar levels of InSTI susceptibility, except for three haplotypes that showed up to 3-fold increases in InSTI susceptibility (p ≤ 0.032). The replicative fitness of most viruses expressing patient-derived IN only significantly decreased, ranging from 8% to 56% (p ≤ 0.01). Interestingly, the addition of coevolved PR + RT significantly increased the replicative fitness of some haplotypes by up to 73% (p ≤ 0.024). Coevolved PR + RT contributes to the susceptibility and viral fitness of patient-derived IN viruses. Maintaining patients on failing cART promotes the selection of fitter resistant strains, and thereby limits future therapy options.


Sign in / Sign up

Export Citation Format

Share Document