replicative fitness
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 29)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kristina V Tugaeva ◽  
Andrey A. Sysoev ◽  
Jake L. R. Smith ◽  
Richard B Cooley ◽  
Alfred A. Antson ◽  
...  

The SARS-CoV-2 nucleocapsid protein (N) is responsible for viral genome packaging and virion assembly. Being highly abundant in the host cell, N interacts with numerous human proteins and undergoes multisite phosphorylation in vivo. When phosphorylated within its Ser/Arg-rich region, a tract highly prone to mutations as exemplified in the Omicron and Delta variants, N recruits human 14-3-3 proteins, potentially hijacking their functions. Here, we show that in addition to phosphorylated Ser197, an alternative, less conserved phosphosite at Thr205 not found in SARS-CoV N binds 14-3-3 with micromolar affinity and is in fact preferred over pS197. Fluorescence anisotropy reveals a distinctive pT205/pS197 binding selectivity towards the seven human 14-3-3 isoforms. Crystal structures explain the structural basis for the discovered selectivity towards SARS-CoV-2 N phosphopeptides, and also enable prediction for how N variants interact with 14-3-3, suggesting a link between the strength of this interaction and replicative fitness of emerging coronavirus variants.


2021 ◽  
Author(s):  
Elena Sugrue ◽  
Arthur Wickenhagen ◽  
Nardus Mollentze ◽  
Muhamad Afiq Aziz ◽  
Vattipally B Sreenu ◽  
...  

HIV-1 transmission via sexual exposure is a relatively inefficient process. When successful transmission does occur, newly infected individuals are colonized by either a single or a very small number of establishing virion(s). These transmitted founder (TF) viruses are more interferon (IFN) resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced ′antiviral state′ than TF viruses, we established a pair of fluorescent GFP-IRES-Nef TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening. The relatively uniform ISG resistance of transmitted HIV-1 directed us to investigate the underlying mechanism. Our subsequent in silico simulations, modelling, and in vitro characterisation of a model TF/CC pair (closely matched in replicative fitness), revealed that small differences in replicative growth rates can explain the broad IFN resistance displayed by transmitted HIV-1. We propose that the apparent IFN resistance of transmitted HIV-1 is a consequence of enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1889
Author(s):  
Rachel L. Fay ◽  
Kiet A. Ngo ◽  
Lili Kuo ◽  
Graham G. Willsey ◽  
Laura D. Kramer ◽  
...  

West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth’s average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector–virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1070
Author(s):  
Supang A. Martin ◽  
Patricia A. Cane ◽  
Deenan Pillay ◽  
Jean L. Mbisa

Integrase strand transfer inhibitors (InSTIs) are recommended agents in first-line combination antiretroviral therapy (cART). We examined the evolution of drug resistance mutations throughout HIV-1 pol and the effects on InSTI susceptibility and viral fitness. We performed single-genome sequencing of full-length HIV-1 pol in a highly treatment-experienced patient, and determined drug susceptibility of patient-derived HIV-1 genomes using a phenotypic assay encompassing full-length pol gene. We show the genetic linkage of multiple InSTI-resistant haplotypes containing major resistance mutations at Y143, Q148 and N155 to protease inhibitor (PI) and reverse transcriptase inhibitor (RTI) resistance mutations. Phenotypic analysis of viruses expressing patient-derived IN genes with eight different InSTI-resistant haplotypes alone or in combination with coevolved protease (PR) and RT genes exhibited similar levels of InSTI susceptibility, except for three haplotypes that showed up to 3-fold increases in InSTI susceptibility (p ≤ 0.032). The replicative fitness of most viruses expressing patient-derived IN only significantly decreased, ranging from 8% to 56% (p ≤ 0.01). Interestingly, the addition of coevolved PR + RT significantly increased the replicative fitness of some haplotypes by up to 73% (p ≤ 0.024). Coevolved PR + RT contributes to the susceptibility and viral fitness of patient-derived IN viruses. Maintaining patients on failing cART promotes the selection of fitter resistant strains, and thereby limits future therapy options.


2021 ◽  
Author(s):  
Camden R. Bair ◽  
Wei Zhang ◽  
Gabriel Gonzalez ◽  
Arash Kamali ◽  
Daniel Stylos ◽  
...  

Human adenovirus type 4 (HAdV-E4) is the only type (and serotype) classified within species Human mastadenovirus E that has been isolated from a human host to the present. Recent phylogenetic analysis of whole genome sequences of strains representing the spectrum of intratypic genetic diversity described to date identified two major evolutionary lineages designated phylogroups (PG) I, and II, and validated the early clustering of HAdV-E4 genomic variants into two major groups by low resolution restriction fragment length polymorphism analysis. In this study we expanded our original analysis of intra- and inter-PG genetic variability, and used a panel of viruses representative of the spectrum of genetic diversity described for HAdV-E4 to examine the magnitude of inter- and intra-PG phenotypic diversity using an array of cell-based assays and a cotton rat model of HAdV respiratory infection. Our proteotyping of HAdV-E strains using concatenated protein sequences in selected coding regions including E1A, E1B-19K and -55K, DNA polymerase, L4-100K, various E3 proteins, and E4-34K confirmed that the two clades encode distinct variants/proteotypes at most of these loci. Our in vitro and in vivo studies demonstrated that PG I and PG II differ in their growth, spread, and cell killing phenotypes in cell culture and in their pulmonary pathogenic phenotypes. Surprisingly, the differences in replicative fitness documented in vitro between PGs did not correlate with the differences in virulence observed in the cotton rat model. This body of work is the first reporting phenotypic correlates of naturally occurring intratypic genetic variability for HAdV-E4. IMPORTANCE Human adenovirus type 4 (HAdV-E4) is a prevalent causative agent of acute respiratory illness of variable severity and of conjunctivitis and comprises two major phylogroups that carry distinct coding variations in proteins involved in viral replication and modulation of host responses to infection. Our data show that PG I and PG II are intrinsically different regarding their ability to grow and spread in culture and to cause pulmonary disease in cotton rats. This is the first report of phenotypic divergence among naturally occurring known genetic variants of a HAdV type of medical importance. This research reveals readily detectable phenotypic differences between strains representing phylogroups I and II, and it introduces a unique experimental system for the elucidation of the genetic basis of adenovirus fitness and virulence and thus for increasing our understanding of the implications of intratypic genetic diversity in the presentation and course of HAdV-E4-associated disease.


mBio ◽  
2021 ◽  
Author(s):  
Franck Touret ◽  
Léa Luciani ◽  
Cécile Baronti ◽  
Maxime Cochin ◽  
Jean-Sélim Driouich ◽  
...  

The emergence of several SARS-CoV-2 variants raised numerous questions concerning the future course of the pandemic. We are currently observing a replacement of the circulating viruses by the variant from the United Kingdom known as 20I/501Y.V1, from the B.1.1.7 lineage, but there is little biological evidence that this new variant exhibits a different phenotype.


2021 ◽  
Vol 299 ◽  
pp. 198424
Author(s):  
Hongye Wang ◽  
Yang Li ◽  
Ya Li ◽  
Bingxiang Li ◽  
Xiaoyong Zhu ◽  
...  

2021 ◽  
Author(s):  
Mart M Lamers ◽  
Tim I Breugem ◽  
Anna Z Mykytyn ◽  
Yiquan Wang ◽  
Nathalie Groen ◽  
...  

A new phase of the COVID-19 pandemic has started as several SARS-CoV-2 variants are rapidly emerging globally, raising concerns for increased transmissibility. As animal models and traditional in vitro systems may fail to model key aspects of the SARS-CoV-2 replication cycle, representative in vitro systems to assess variants phenotypically are urgently needed. We found that the British variant (clade B.1.1.7), compared to an ancestral SARS-CoV-2 clade B virus, produced higher levels of infectious virus late in infection and had a higher replicative fitness in human airway, alveolar and intestinal organoid models. Our findings unveil human organoids as powerful tools to phenotype viral variants and suggest extended shedding as a correlate of fitness for SARS-CoV-2.


2021 ◽  
Author(s):  
Dixit Tandel ◽  
Divya Gupta ◽  
Vishal Sah ◽  
Krishnan Harinivas Harshan

SUMMARYSeveral variants of SARS-CoV-2 have been emerging across the globe, continuing to threaten the efforts to end COVID-19 pandemic. Recent data indicate the prevalence of variants with N440K Spike substitution in several parts of India, which is under the second wave of the pandemic. Here, we first analyze the prevalence of N440K variants within the sequences submitted from India and identify a rising trend of its spread across various clusters. We then compare the replicative fitness and infectivity of a prototype of this variant with two other previously prevalent strains. The N440K variant produced ten times higher infectious viral titers than a prevalent A2a strain, and over 1000 folds higher titers than a much less prevalent A3i strain prototype in Caco2 cells. Similar results were detected in Calu-3 cells as well, confirming the increased potency of the N440K variant. Interestingly, A3i strain showed the highest viral RNA levels, but the lowest infectious titers in the culture supernatants, indicating the absence of correlation between the RNA content and the infectivity of the sample. N440K mutation has been reported in several viral sequences across India and based on our results, we predict that the higher infectious titers achieved by N440K variant could possibly lead to its higher rate of transmission. Availability of more sequencing data in the immediate future would help understand the potential spread of this variant in more detail.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249581
Author(s):  
Ling Kong ◽  
Rebekah Karns ◽  
Mohamed Tarek M. Shata ◽  
Jennifer L. Brown ◽  
Michael S. Lyons ◽  
...  

The US is in the midst of a major drug epidemic fueled in large part by the widespread recreational use of synthetic opioids such as fentanyl. Persons with opioid use disorder are at significant risk for transmission of injection-associated infections such as hepatitis B virus (HBV) and hepatitis C virus (HCV). Commonly abused substances may antagonize immune responses and promote viral replication. However, the impact of synthetic opioids on virus replication has not been well explored. Thus, we evaluated the impact of fentanyl and carfentanil using in vitro systems that replicate infectious viruses. Fentanyl was used in cell lines replicating HBV or HCV at concentrations of 1 ng, 100 ng, and 10 ug. Viral protein synthesis was quantified by ELISA, while apoptosis and cell death were measured by M30 or MTT assays, respectively. HCV replicative fitness was evaluated in a luciferase-based system. RNAseq was performed to evaluate cellular gene regulation in the presence of fentanyl. Low dose fentanyl had no impact on HCV replication in Huh7.5JFH1 hepatocytes; however, higher doses significantly enhanced HCV replication. Similarly, a dose-dependent increase in HCV replicative fitness was observed in the presence of fentanyl. In the HepG2.2.15 hepatocyte cell line, fentanyl caused a dose-dependent increase in HBV replication, although only a higher doses than for HCV. Addition of fentanyl resulted in significant apoptosis in both hepatocyte cell lines. Cell death was minimal at low drug concentrations. RNAseq identified a number of hepatocyte genes that were differentially regulated by fentanyl, including those related to apoptosis, the antiviral / interferon response, chemokine signaling, and NFκB signaling. Collectively, these data suggest that synthetic opioids promote viral replication but may have distinct effects depending on the drug dose and the viral target. As higher viral loads are associated with pathogenesis and virus transmission, additional research is essential to an enhanced understanding of opioid-virus pathogenesis and for the development of new and optimized treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document