A Rapid Method for Simultaneous Detection of Phenotypic Resistance to Inhibitors of Protease and Reverse Transcriptase in Recombinant Human Immunodeficiency Virus Type 1 Isolates from Patients Treated with Antiretroviral Drugs

1998 ◽  
Vol 42 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Kurt Hertogs ◽  
Marie-Pierre de Béthune ◽  
Veronica Miller ◽  
Tania Ivens ◽  
Patricia Schel ◽  
...  

ABSTRACT Combination therapy with protease (PR) and reverse transcriptase (RT) inhibitors can efficiently suppress human immunodeficiency virus (HIV) replication, but the emergence of drug-resistant variants correlates strongly with therapeutic failure. Here we describe a new method for high-throughput analysis of clinical samples that permits the simultaneous detection of HIV type 1 (HIV-1) phenotypic resistance to both RT and PR inhibitors by means of recombinant virus assay technology. HIV-1 RNA is extracted from plasma samples, and a 2.2-kb fragment containing the entire HIV-1 PR- and RT-coding sequence is amplified by nested reverse transcription-PCR. The pool of PR-RT-coding sequences is then cotransfected into CD4+ T lymphocytes (MT4) with the pGEMT3ΔPRT plasmid from which most of the PR (codons 10 to 99) and RT (codons 1 to 482) sequences are deleted. Homologous recombination leads to the generation of chimeric viruses containing PR- and RT-coding sequences derived from HIV-1 RNA in plasma. The susceptibilities of the chimeric viruses to all currently available RT and/or PR inhibitors is determined by an MT4 cell–3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based cell viability assay in an automated system that allows high sample throughput. The profile of resistance to all RT and PR inhibitors is displayed graphically in a single PR-RT-Antivirogram. This assay system facilitates the rapid large-scale phenotypic resistance determinations for all RT and PR inhibitors in one standardized assay.

2001 ◽  
Vol 45 (6) ◽  
pp. 1836-1842 ◽  
Author(s):  
Bernard Masquelier ◽  
Esther Race ◽  
Catherine Tamalet ◽  
Diane Descamps ◽  
Jacques Izopet ◽  
...  

ABSTRACT Genomic rearrangements in the 5′ part of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been involved in multidrug resistance to nucleoside RT inhibitors (NRTI). We carried out a retrospective, multicenter study to investigate the prevalence, variability, and phenotypic consequences of such rearrangements. Data concerning the HIV-1 RT genotype and the biological and clinical characteristics of NRTI-treated patients were collected from 10 virology laboratories. Sensitivities of the different HIV-1 variants to RT inhibitors were analyzed in a single-cycle recombinant virus assay. Fifty-two of 2,152 (2.4%) RT sequences had a rearrangement in the 5′ part of the RT, with an extensive molecular variation. The number of codons inserted between positions 68 and 69 ranged from 1 (3 samples) or 2 (41 samples) to 5 and 11 in one case each. In four cases, codon 67 was deleted. High levels of phenotypic resistance to zidovudine (AZT), lamivudine (3TC), stavudine (d4T), abacavir (ABC), and didanosine (ddI) were found in 95, 92, 72, 62, and 15% of the 40 samples analyzed, respectively. Resistance to AZT, d4T, and ABC could be found in the absence of the T215Y/F mutations. Resistance to 3TC could develop in the absence of specific mutations. Low-level resistance to ddI was noticed in 40% of the patients. The deletions of codon 67 seemed to have little effect on NRTI sensitivity. Most of the rearrangements were shown to contribute to cross-resistance to NRTI. The results regarding susceptibility to ddI raise the question of the interpretation of the phenotypic data concerning this drug.


2000 ◽  
Vol 38 (1) ◽  
pp. 402-405
Author(s):  
J. Gerardo García Lerma ◽  
Vincent Soriano ◽  
Antonio Mas ◽  
Miguel E. Quiñones-Mateu ◽  
Eric J. Arts ◽  
...  

ABSTRACT We have evaluated the use of an ultrasensitive reverse transcriptase (RT) activity assay to monitor plasma viremia in two human immunodeficiency virus type 1 (HIV-1) group O-infected patients treated with stavudine, lamivudine, and indinavir. After a initial decline in RT levels observed at 4 weeks of therapy, RT-based plasma viremia returned to baseline values at 28 or 44 weeks of treatment. The rebound in levels of RT activity was associated with the detection of phenotypic resistance to lamivudine and with the Met184Val mutation. Analysis of RT activity in plasma provides a sequence-independent means of monitoring virus loads in HIV-1 group O-infected patients.


2006 ◽  
Vol 80 (14) ◽  
pp. 7186-7198 ◽  
Author(s):  
Valentina Svicher ◽  
Tobias Sing ◽  
Maria Mercedes Santoro ◽  
Federica Forbici ◽  
Fátima Rodríguez-Barrios ◽  
...  

ABSTRACT We characterized 16 additional mutations in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) whose role in drug resistance is still unknown by analyzing 1,906 plasma-derived HIV-1 subtype B pol sequences from 551 drug-naïve patients and 1,355 nucleoside RT inhibitor (NRTI)-treated patients. Twelve mutations positively associated with NRTI treatment strongly correlated both in pairs and in clusters with known NRTI resistance mutations on divergent evolutionary pathways. In particular, T39A, K43E/Q, K122E, E203K, and H208Y clustered with the nucleoside analogue mutation 1 cluster (NAM1; M41L+L210W+T215Y). Their copresence in this cluster was associated with an increase in thymidine analogue resistance. Moreover, treatment failure in the presence of K43E, K122E, or H208Y was significantly associated with higher viremia and lower CD4 cell count. Differently, D218E clustered with the NAM2 pathway (D67N+K70R+K219Q+T215F), and its presence in this cluster determined an increase in zidovudine resistance. In contrast, three mutations (V35I, I50V, and R83K) negatively associated with NRTI treatment showed negative correlations with NRTI resistance mutations and were associated with increased susceptibility to specific NRTIs. In particular, I50V negatively correlated with the lamivudine-selected mutation M184V and was associated with a decrease in M184V/lamivudine resistance, whereas R83K negatively correlated with both NAM1 and NAM2 clusters and was associated with a decrease in thymidine analogue resistance. Finally, the association pattern of the F214L polymorphism revealed its propensity for the NAM2 pathway and its strong negative association with the NAM1 pathway. Our study provides evidence of novel RT mutational patterns that regulate positively and/or negatively NRTI resistance and strongly suggests that other mutations beyond those currently known to confer resistance should be considered for improved prediction of clinical response to antiretroviral drugs.


1997 ◽  
Vol 41 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
C Shi ◽  
J W Mellors

We have developed a new recombinant retroviral system in which a library of infectious molecular clones of human immunodeficiency virus type 1 (HIV-1) is constructed with reverse transcriptase (RT) genes derived from viral RNA sequences in plasma. HIV-1 RT is amplified from plasma HIV-1 RNA by nested RT-PCR and cloned into a RT-defective HIV-1 proviral vector (xxLAI-np), generating 10(3) to 10(4) recombinant proviral clones from each reaction. The bulk cloning products or individual molecular clones are transfected into MT-2 cells to generate infectious virus. The resultant viruses are assayed for drug susceptibility in CD4+ cell lines to determine either the dominant phenotype of the recombinant virus mixture or the phenotypes of the individual viral clones. DNA sequencing of the cloned RT genes can identify mutations associated with phenotypic resistance of clonal mixtures or individual clones. This method can be used to rapidly detect the in vivo emergence of HIV-1 quasispecies resistant to RT inhibitors.


2000 ◽  
Vol 38 (11) ◽  
pp. 3919-3925 ◽  
Author(s):  
Laurence Vergne ◽  
Martine Peeters ◽  
Eitel Mpoudi-Ngole ◽  
Anke Bourgeois ◽  
Florian Liegeois ◽  
...  

Most human immunodeficiency virus (HIV) drug susceptibility studies have involved subtype B strains. Little information on the impact of viral diversity on natural susceptibility to antiretroviral drugs has been reported. However, the prevalence of non-subtype-B (non-B) HIV type 1 (HIV-1) strains continues to increase in industrialized countries, and antiretroviral treatments have recently become available in certain developing countries where non-B subtypes predominate. We sequenced the protease and reverse transcriptase (RT) genes of 142 HIV-1 isolates from antiretroviral-naive patients: 4 belonged to group O and 138 belonged to group M (9 subtype A, 13 subtype B, 2 subtype C, 5 subtype D, 2 subtype F1, 9 subtype F2, 4 subtype G, 5 subtype J, 2 subtype K, 3 subtype CRF01-AE, 67 subtype CRF02-AG, and 17 unclassified isolates). No major mutations associated with resistance to nucleoside reverse transcriptase inhibitors (NRTIs) or protease inhibitors were detected. Major mutations linked to resistance to non-NRTI agents were detected in all group O isolates (A98G and Y181C) and in one subtype J virus (V108I). In contrast, many accessory mutations were found, especially in the protease gene. Only 5.6% of the 142 strains, all belonging to subtype B or D, had no mutations in the protease gene. Sixty percent had one mutation, 22.5% had two mutations, 9.8% had three mutations, and 2.1% (all group O strains) had four mutations. In order of decreasing frequency, the following mutations were identified in the protease gene: M36I (86.6%), L10I/V (26%), L63P (12.6%), K20M/R (11.2%), V77I (5.6%), A71V (2.8%), L33F (0.7%), and M46I (0.7%). R211K, an accessory mutation associated with NRTI resistance, was also observed in 43.6% of the samples. Phenotypic and clinical studies are now required to determine whether multidrug-resistant viruses emerge more rapidly during antiretroviral therapy when minor resistance-conferring mutations are present before treatment initiation.


1998 ◽  
Vol 42 (12) ◽  
pp. 3123-3129 ◽  
Author(s):  
Veronica Miller ◽  
Marie-Pierre de Béthune ◽  
Astrid Kober ◽  
Martin Stürmer ◽  
Kurt Hertogs ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) strains resistant to nonnucleoside reverse transcriptase inhibitors (NNRTIs) may easily be selected for in vitro and in vivo under a suboptimal therapy regimen. Although cross-resistance is extensive within this class of compounds, newer NNRTIs were reported to retain activity against laboratory strains containing defined resistance-associated mutations. We have characterized HIV-1 resistance to loviride and the extent of cross-resistance to nevirapine, delavirdine, efavirenz, HBY-097, and tivirapine in a set of 24 clinical samples from patients treated with long-term loviride monotherapy by using a recombinant virus assay. Genotypic changes associated with resistance were analyzed by population sequencing. Overall, phenotypic resistance to loviride ranged from 0.04 to 3.47 log10-fold. Resistance was observed in samples from patients who had discontinued loviride for up to 27 months. Cross-resistance to the other compounds was extensive; however, fold resistance to efavirenz was significantly lower than fold resistance to nevirapine. No genotypic changes were detected in three samples; these were sensitive to all of the NNRTIs tested. The most common genotypic change was the K103N substitution. The range of phenotypic resistance in samples containing the K103N substitution could not be predicted from a genotypic analysis of known NNRTI resistance-associated mutations. The Y181C substitution was detected in one isolate which was resistant to loviride and delavirdine but sensitive to efavirenz, HBY-097, and tivirapine. Our data indicate that the available newer NNRTIs which retain activity against some HIV-1 strains selected by other compounds of this class in vitro may have compromised clinical efficacy in some patients pretreated with NNRTI.


2000 ◽  
Vol 74 (20) ◽  
pp. 9532-9539 ◽  
Author(s):  
Louis M. Mansky ◽  
Lisa C. Bernard

ABSTRACT How antiretroviral drug resistance influences human immunodeficiency virus type 1 (HIV-1) evolution is not clear. This study tested the hypothesis that antiretroviral drugs such as 3′-azido-3′-deoxythymidine (AZT) can influence the in vivo mutation rate of HIV-1. It was observed that AZT can increase the rate of HIV-1 mutation by a factor of 7 in a single round of replication. In addition, (−)2′,3′-dideoxy-3′-thiacytidine (3TC) was also found to increase the mutation rate of HIV-1 by a factor of 3. It was also found that HIV-1 drug-resistant reverse transcriptase (RT) variants can influence the in vivo mutation rate. Replication of HIV-1 with AZT-resistant RTs increased the mutation rate by as much as a factor of 3, while replication of HIV-1 with a 3TC-resistant RT (M184V) had no significant effect on the mutation rate. It was observed that only high-level, AZT-resistant RT variants could influence the in vivo mutation rate (i.e., M41L/T215Y and M41L/D67N/K70R/T215Y). In total, these observations indicate that both antiretroviral drugs and drug resistance mutations can influence the in vivo mutation rate of HIV-1.


2000 ◽  
Vol 44 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Kurt Hertogs ◽  
Stuart Bloor ◽  
Veronique De Vroey ◽  
Christel van den Eynde ◽  
Pascale Dehertogh ◽  
...  

ABSTRACT We describe a new human immunodeficiency virus type 1 (HIV-1) mutational pattern associated with phenotypic resistance to lamivudine (3TC) in the absence of the characteristic replacement of methionine by valine at position 184 (M184V) of reverse transcriptase. Combined genotypic and phenotypic analyses of clinical isolates revealed the presence of moderate levels of phenotypic resistance (between 4- and 50-fold) to 3TC in a subset of isolates that did not harbor the M184V mutation. Mutational cluster analysis and comparison with the phenotypic data revealed a significant correlation between moderate phenotypic 3TC resistance and an increased incidence of replacement of glutamic acid by aspartic acid or alanine and of valine by isoleucine at residues 44 and 118 of reverse transcriptase, respectively. This occurred predominantly in those isolates harboring zidovudine resistance-associated mutations (41L, 215Y). The requirement of the combination of mutations 41L and 215Y with mutations 44D and 44A and/or 118I for phenotypic 3TC resistance was confirmed by site-directed mutagenesis experiments. These data support the assumption that HIV-1 may have access to several different genetic pathways to escape drug pressure or that the increase in the frequency of particular mutations may affect susceptibility to drugs that have never been part of a particular regimen.


2005 ◽  
Vol 79 (6) ◽  
pp. 3536-3543 ◽  
Author(s):  
Lia van der Hoek ◽  
Nicole Back ◽  
Maarten F. Jebbink ◽  
Anthony de Ronde ◽  
Margreet Bakker ◽  
...  

ABSTRACT Resistance to antiretroviral drugs is generally conferred by specific amino acid substitutions, rather than insertions or deletions, in reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1). The exception to these findings is the amino acid insertions found in the β3-β4 loop of the RT enzyme in response to treatment with nucleoside reverse transcriptase inhibitors. This insert consists most commonly of two amino acids, but we describe in detail the evolution of a variant with an 8-amino-acid (aa) insert in a patient treated with zidovudine (ZDV) and 2′-3′-dideoxycytidine (ddC). The 24-nucleotide insert is a partial duplication of local sequences but also contains a sequence segment of unknown origin. Extensive sequence analysis of longitudinal patient samples indicated that the HIV-1 population prior to the start of therapy contained not the wild-type amino acid 215T in RT but a mixture with 215D and 215C. Treatment with ZDV and subsequent ZDV-ddC combination therapy resulted in the evolution of an HIV-1 variant with a typical ZDV resistance genotype (41L, 44D, 67N, 69D, 210W, 215Y), which was slowly replaced by the insert-containing variant (41L, 44D, insert at position 69, 70R, 210W, 215Y). The latter variant demonstrated increased resistance to a wide range of drugs, indicating that the 8-aa insert augments nucleoside analogue resistance. The gain in drug resistance of the insert variant came at the expense of a reduction in replication capacity when assayed in the absence of drugs. We compared these data with the resistance and replication properties of 133 insert-containing sequences of different individuals present in the ViroLogic database and found that the size and actual sequence of the insert at position 69 influence the level of resistance to nucleoside analogues.


1998 ◽  
Vol 72 (5) ◽  
pp. 3534-3538 ◽  
Author(s):  
Cristian Apetrei ◽  
Diane Descamps ◽  
Gilles Collin ◽  
Ibtisam Loussert-Ajaka ◽  
Florence Damond ◽  
...  

ABSTRACT We sequenced and phylogenetically analyzed the reverse transcriptase (RT) regions of the pol genes of 14 human immunodeficiency virus type 1 (HIV-1) isolates from Romanian patients, which were classified as subtype F on the basis ofenv gene structure. The RT sequences showed that the strains clustered phylogenetically and were equidistant from other HIV-1 subtypes as shown by the neighbor-joining and maximum-likelihood methods, allowing us to define HIV-1 subtype F according to thepol classification. The subtype F RT sequences differed from reported group M RT sequences by 10.94% (for nucleotides) and 7.6% (for amino acids). Phenotypic analysis of subtype F susceptibility to three classes of antiretroviral compounds showed an increase in the 50% inhibitory concentration of the tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepin-2-(1H)-one and -thione (TIBO) derivate R82913 for one strain which was naturally resistant to this compound. This first report of subtype Fpol sequences confirms the perfect correlation between the phylogenetic positions determined by env andpol analyses and suggests that virus variability might influence the efficacy of antiretroviral treatments. This finding warrants a global evaluation of the phenotypic and genotypic susceptibility of HIV-1 subtypes to antiretroviral drugs.


Sign in / Sign up

Export Citation Format

Share Document