scholarly journals Chain-Terminating Dinucleoside Tetraphosphates Are Substrates for DNA Polymerization by Human Immunodeficiency Virus Type 1 Reverse Transcriptase with Increased Activity against Thymidine Analogue-Resistant Mutants

2006 ◽  
Vol 50 (11) ◽  
pp. 3607-3614 ◽  
Author(s):  
Peter R. Meyer ◽  
Anthony J. Smith ◽  
Suzanne E. Matsuura ◽  
Walter A. Scott

ABSTRACT Nucleoside reverse transcriptase inhibitors are an important class of drugs for treatment of human immunodeficiency virus type 1 (HIV-1) infection. Resistance to these drugs is often the result of mutations that increase the transfer of chain-terminating nucleotides from blocked DNA termini to a nucleoside triphosphate acceptor, resulting in the generation of an unblocked DNA chain and synthesis of a dinucleoside polyphosphate containing the chain-terminating deoxynucleoside triphosphate analogue. We have synthesized and purified several dinucleoside tetraphosphates (ddAp4ddA, ddCp4ddC, ddGp4ddG, ddTp4ddT, Ap4ddG, 2′(3′)-O-(N-methylanthraniloyl)-Ap4ddG, and AppNHppddG) and show that these compounds can serve as substrates for DNA chain elongation and termination resulting in inhibition of DNA synthesis. Thymidine analogue-resistant mutants of reverse transcriptase are up to 120-fold more sensitive to inhibition by these compounds than is wild-type enzyme. Drugs based on the dinucleoside tetraphosphate structure could delay or prevent the emergence of mutants with enhanced primer unblocking activity. In addition, such drugs could suppress the resistance phenotype of mutant HIV-1 that is present in individuals infected with resistant virus.

2004 ◽  
Vol 48 (9) ◽  
pp. 3483-3490 ◽  
Author(s):  
Michael J. Hofman ◽  
Joanne Higgins ◽  
Timothy B. Matthews ◽  
Niels C. Pedersen ◽  
Chalet Tan ◽  
...  

ABSTRACT The specificity of nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for the RT of human immunodeficiency virus type 1 (HIV-1) has prevented the use of simian immunodeficiency virus (SIV) in the study of NNRTIs and NNRTI-based highly active antiretroviral therapy. However, a SIV-HIV-1 chimera (RT-SHIV), in which the RT from SIVmac239 was replaced with the RT-encoding region from HIV-1, is susceptible to NNRTIs and is infectious to rhesus macaques. We have evaluated the antiviral activity of efavirenz against RT-SHIV and the emergence of efavirenz-resistant mutants in vitro and in vivo. RT-SHIV was susceptible to efavirenz with a mean effective concentration of 5.9 ± 4.5 nM, and RT-SHIV variants selected with efavirenz in cell culture displayed 600-fold-reduced susceptibility. The efavirenz-resistant mutants of RT-SHIV had mutations in RT similar to those of HIV-1 variants that were selected under similar conditions. Efavirenz monotherapy of RT-SHIV-infected macaques produced a 1.82-log-unit decrease in plasma viral-RNA levels after 1 week. The virus load rebounded within 3 weeks in one treated animal and more slowly in a second animal. Virus isolated from these two animals contained the K103N and Y188C or Y188L mutations. The RT-SHIV-rhesus macaque model may prove useful for studies of antiretroviral drug combinations that include efavirenz.


2006 ◽  
Vol 80 (14) ◽  
pp. 7186-7198 ◽  
Author(s):  
Valentina Svicher ◽  
Tobias Sing ◽  
Maria Mercedes Santoro ◽  
Federica Forbici ◽  
Fátima Rodríguez-Barrios ◽  
...  

ABSTRACT We characterized 16 additional mutations in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) whose role in drug resistance is still unknown by analyzing 1,906 plasma-derived HIV-1 subtype B pol sequences from 551 drug-naïve patients and 1,355 nucleoside RT inhibitor (NRTI)-treated patients. Twelve mutations positively associated with NRTI treatment strongly correlated both in pairs and in clusters with known NRTI resistance mutations on divergent evolutionary pathways. In particular, T39A, K43E/Q, K122E, E203K, and H208Y clustered with the nucleoside analogue mutation 1 cluster (NAM1; M41L+L210W+T215Y). Their copresence in this cluster was associated with an increase in thymidine analogue resistance. Moreover, treatment failure in the presence of K43E, K122E, or H208Y was significantly associated with higher viremia and lower CD4 cell count. Differently, D218E clustered with the NAM2 pathway (D67N+K70R+K219Q+T215F), and its presence in this cluster determined an increase in zidovudine resistance. In contrast, three mutations (V35I, I50V, and R83K) negatively associated with NRTI treatment showed negative correlations with NRTI resistance mutations and were associated with increased susceptibility to specific NRTIs. In particular, I50V negatively correlated with the lamivudine-selected mutation M184V and was associated with a decrease in M184V/lamivudine resistance, whereas R83K negatively correlated with both NAM1 and NAM2 clusters and was associated with a decrease in thymidine analogue resistance. Finally, the association pattern of the F214L polymorphism revealed its propensity for the NAM2 pathway and its strong negative association with the NAM1 pathway. Our study provides evidence of novel RT mutational patterns that regulate positively and/or negatively NRTI resistance and strongly suggests that other mutations beyond those currently known to confer resistance should be considered for improved prediction of clinical response to antiretroviral drugs.


2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2002 ◽  
Vol 76 (7) ◽  
pp. 3248-3256 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT The M184V mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) causes resistance to lamivudine, but it also increases the sensitivity of the virus to zidovudine (3′-azido-3′-deoxythymidine; AZT). This sensitization to AZT is seen both in the presence and the absence of the mutations that confer resistance to AZT. AZT resistance is due to enhanced excision of AZT 5′-monophosphate (AZTMP) from the end of the primer by the RT of the resistant virus. Published data suggest that the excision reaction involves pyrophosphorolysis but that the likely in vivo pyrophosphate donor is not pyrophosphate but ATP. The mutations that lead to AZT resistance enhance ATP binding and, in so doing, enhance pyrophosphorolysis. The excision reaction is specific for AZT because HIV-1 RT, which can form a closed complex with a dideoxy-terminated primer and an incoming deoxynucleoside triphosphate (dNTP), does not form the closed complex with an AZTMP-terminated primer and an incoming dNTP. This means that an AZTMP-terminated primer has better access to the site where it can be excised. The M184V mutation alters the polymerase active site in a fashion that specifically interferes with ATP-mediated excision of AZTMP from the end of the primer strand. The M184V mutation does not affect the incorporation of AZT 5′-triphosphate (AZTTP), either in the presence or the absence of mutations that enhance AZTMP excision. However, in the presence of ATP, the M184V mutation does decrease the ability of HIV-1 RT to carry out AZTMP excision. Based on these results, and on the results of other excision experiments, we present a model to explain how the M184V mutation affects AZTMP excision.


2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.


2005 ◽  
Vol 49 (5) ◽  
pp. 1761-1769 ◽  
Author(s):  
Anthony J. Smith ◽  
Peter R. Meyer ◽  
Deshratn Asthana ◽  
Margarita R. Ashman ◽  
Walter A. Scott

ABSTRACT Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3′-azido-3′-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [32P]ddAMP-terminated DNA primer/template gave rise to 32P-labeled adenosine 2′,3′-dideoxyadenosine 5′,5′′′−P1,P4-tetraphosphate (Ap4ddA), ddATP, Gp4ddA, and Ap3ddA, corresponding to the transfer of [32P]ddAMP to ATP, PPi, GTP, and ADP, respectively. Incubation with [32P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous 32P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PPi levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4+ or CD8+ T cells, while PPi was present at 7 to 15 μM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4+ or CD8+ T cells contained 1.4 to 2.7 mM ATP and 55 to 79 μM PPi. These cellular PPi concentrations are lower than previously reported; nonetheless, the PPi-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PPi-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.


Sign in / Sign up

Export Citation Format

Share Document