scholarly journals Analysis of the Thermostability Determinants of Hyperthermophilic Esterase EstE1 Based on Its Predicted Three-Dimensional Structure

2006 ◽  
Vol 72 (4) ◽  
pp. 3021-3025 ◽  
Author(s):  
Jin-Kyu Rhee ◽  
Do-Yun Kim ◽  
Dae-Gyun Ahn ◽  
Jung-Hyuk Yun ◽  
Seung-Hwan Jang ◽  
...  

ABSTRACT The three-dimensional (3D) structure of the hyperthermophilic esterase EstE1 was constructed by homology modeling using Archaeoglobus fulgidus esterase as a reference, and the thermostability-structure relationship was analyzed. Our results verified the predicted 3D structure of EstE1 and identified the ion pair networks and hydrophobic interactions that are critical determinants for the thermostability of EstE1.

BIOEDUSCIENCE ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 37-47
Author(s):  
Suprianto ◽  
Made Budiarsa ◽  
Fatmah Dhafir

Background: VP1 structural protein plays a role as a key player in the pathogenesis, has a uniqueness that is interesting enough to be studied by studying the nature and function of structural proteins VP1. This study aims to predict the three-dimensional structure of proteins VP1 on EV-A71. Methods: The target protein is obtained from UniProt server with an access code A0A097EV89using templates 4cey.1.A (PDB ID) were analyzed in silico by homology method using SWISS-MODEL server. Results: Analysis showed the target protein and the template has 95.29% identity and is composed of 297 amino acids with a value of -2.15 QMEAN. Structural protein VP1 in Ramachandran Plots have a stable structure, non-glycine residue in the outlier regions only around 0.34% (A53 ALA) Rated rotamer outliers 1.61%.    Conclusion: The three-dimensional structure model of the protein studied has a stable structure and the information obtained is useful for further research in developing vaccines for diseases caused by EV-A71.  


2020 ◽  
Vol 477 (20) ◽  
pp. 3951-3962
Author(s):  
Narumi Aoki-Shioi ◽  
Chacko Jobichen ◽  
J. Sivaraman ◽  
R. Manjunatha Kini

Snake venoms are complex mixtures of enzymes and nonenzymatic proteins that have evolved to immobilize and kill prey animals or deter predators. Among them, three-finger toxins (3FTxs) belong to the largest superfamily of nonenzymatic proteins. They share a common structure of three β-stranded loops extending like fingers from a central core containing all four conserved disulfide bonds. Most 3FTxs are monomers and through subtle changes in their amino acid sequences, they interact with different receptors, ion channels and enzymes to exhibit a wide variety of biological effects. The 3FTxs have further expanded their pharmacological space through covalent or noncovalent dimerization. Synergistic-type toxins (SynTxs) isolated from the deadly mamba venoms, although nontoxic, have been known to enhance the toxicity of other venom proteins. However, the details of three-dimensional structure and molecular mechanism of activity of this unusual class of 3FTxs are unclear. We determined the first three-dimensional structure of a SynTx isolated from Dendroaspis jamesoni jamesoni (Jameson's mamba) venom. The SynTx forms a unique homodimer that is held together by an interchain disulfide bond. The dimeric interface is elaborate and encompasses loops II and III. In addition to the inter-subunit disulfide bond, the hydrogen bonds and hydrophobic interactions between the monomers contribute to the dimer formation. Besides, two sulfate ions that mediate interactions between the monomers. This unique quaternary structure is evolved through noncovalent homodimers such as κ-bungarotoxins. This novel dimerization further enhances the diversity in structure and function of 3FTxs.


1996 ◽  
Vol 9 (6) ◽  
pp. 493-498 ◽  
Author(s):  
Romano T. Kroemer ◽  
Stephen W. Doughty ◽  
Alan J. Robinson ◽  
W. Graham Richards

2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Luis Rosales-León Rosales-León ◽  
Eric Edmundo Hernández-Domínguez ◽  
Samantha Gaytán-Mondragón ◽  
Rogelio Rodríguez-Sotres

In contrast to their counterparts in bacteria and animals the soluble inorganic pyrophosphatases from plant cells are active as monomers. The isoforms 1 and 4 from <em>Arabidopsis thaliana</em> have been characterized with more detail, but their three-dimensional structure is unavailable. Here, a recently published protocol (ROSETTA design-HMMer), is used to guide well-known techniques for homology-modeling, in the production of reliable models for the three-dimensional structure of these two arabidopsis isoforms. Their interaction with magnesium ions and pyrophosphate is analyzed <em>in silico</em>in silico.


2018 ◽  
Author(s):  
Sebastian Bittrich ◽  
Michael Schroeder ◽  
Dirk Labudde

AbstractThe three-dimensional structure of proteins captures evolutionary ancestry, and serves as starting point to understand the origin of diseases. Proteins adopt their structure autonomously by the process of protein folding. Over the last decades, the folding process of several proteins has been studied with temporal and spatial resolution which allowed the identification of so-called Early Folding Residues (EFR) in the folding process. These structurally relevant residues become affected early in the folding process and initiate the formation of secondary structure elements and guide their assembly.Using a dataset of 30 proteins and 3,337 residues provided by the Start2Fold database, discriminative features of EFR were identified by a systematical characterization. Therefore, proteins were represented as graphs in order to analyze topological descriptors of EFR. They constitute crucial connectors of protein regions which are distant at sequence level. Especially, these residues exhibit a high number of non-covalent contacts such as hydrogen bonds and hydrophobic interactions. This tendency also manifest as energetically stable local regions in a knowledge-based potential. Conclusively, these features are not only characteristic for EFR but also differ significantly with respect to functional residues. This unveils a split between structurally and functionally relevant residues in proteins which can drastically improve their evolvability and robustness.The characteristics of EFR cannot be attributed to trivial features such as the accessible surface area. Thus, the presented features are novel descriptors for EFR of the folding process. Potentially, these features can be used to design classifiers to predict EFR from structure or to implement structure quality assessment programs. The shown division of labor between functional and EFR has implications for the prediction of mutation effects as well as protein design and can provide insights into the evolution of proteins. Finally, EFR allow to further the understanding of the protein folding process due to their pivotal role.Author summaryProteins are chains of amino acids which adopt a three-dimensional structure and are then able to catalyze chemical reactions or propagate signals in organisms. Without external influence, most proteins fold into their correct structure, and a small number of Early Folding Residues (EFR) have been shown to become affected at the very start of the process. We demonstrated that these residues are located in energetically stable local conformations. EFR are in contact to many other residues of a protein and act as hubs between sequentially distant regions of a proteins. These distinct characteristics can give insights into what causes certain residues to initiate and guide the folding process. Furthermore, it can help our understanding regarding diseases such as Alzheimer’s or amyotrophic lateral sclerosis which are the result of protein folding gone wrong. We further found that the structurally relevant EFR are almost exclusively non-functional. Proteins separate structure and function, which increases evolvability and robustness and gives guidance for the artificial design of proteins.


Sign in / Sign up

Export Citation Format

Share Document