biological effects
Recently Published Documents





Andreia Fuentes Santos ◽  
Marilia Moraes Queiroz Souza ◽  
Karoline Bach Pauli ◽  
Gustavo Ratti da Silva ◽  

Bacopa monnieri(L.) Wettst. (Plantaginaceae), also known as Brahmi, has been used to improve cognitive processes and intellectual functions that are related to the preservation of memory. The objective of this research is to review the ethnobotanical applications, phytochemical composition, toxicity and activity of B. monnieriin the central nervous system. It reviewed articles on B. monnieriusing Google Scholar, SciELO, Science Direct, Lilacs, Medline, and PubMed. Saponins are the main compounds in extracts of B. monnieri. Pharmacological studies showed that B. monnieriimproves learning and memory and presents biological effects against Alzheimer’s disease, Parkinson’s disease, epilepsy, and schizophrenia. No preclinical acute toxicity was reported. However, gastrointestinal side effects were reported in some healthy elderly individuals. Most studies with B. monnierihave been preclinical evaluations of cellular mechanisms in the central nervous system and further translational clinical research needs to be performed to evaluate the safety and efficacy of the plant.

2022 ◽  
Vol 12 (3) ◽  
pp. 544-550
Shuo Yang ◽  
Jincheng Sima ◽  
Wenbo Liao

Bone marrow mesenchymal stem cells (BMSCs) can release a large amount of exosomes (EXO) during bone remodeling by osteoclasts. EXO contains miRNA-211, which has a variety of biological effects. However, little is known about whether miR-211 from BMSC-EXO affects the surrounding cells. Therefore, we aim to study the role of miRNA-211 derived from BMSC-EXO in regulating osteoclasts differentiation. Macrophage colony stimulating factor (M-CSF) and nuclear factor kappa B receptor activator (RANKL) were used to stimulate bone marrow macrophages (BMM) to obtain osteoclasts, which were treated with BMSC-EXO or LPS followed by analysis of osteoclast-related genes expression by PCR, ROS release by flow cytometry, actin ring formation by immunofluorescence, and osteoclast differentiation by anti-tartrate acid phosphatase (TRAP) staining. Finally, an in vivo experiment was conducted to verify BMSC-EXO’s effect on osteoporosis. BMSC-EXO significantly inhibited RNAKL-induced osteoclast differentiation of BMMs. During osteoclasts formation, BMSC-EXO inhibited ROS production induced by RANKL and the subsequent activation of NF-κB signaling pathway induced by ROS. In addition, BMSC-EXO significantly down-regulated the osteoclast genes including nuclear factor, cytoplasmic 1 (NFATc1), C-fos, tartrate-resistant acid phosphatase (TRAP) and osteoclast-associated immunoglobulin-like receptor (OSCAR) in activated T cells. BMSC-EXO inhibited ROS release by promoting miR-211 expression, thereby inhibiting the NF-κB signaling and ultimately participating in osteoclasts differentiation. In LPS-induced mouse osteoporosis models, BMSC-EXO inhibited LPS-induced bone loss and exerted a protective effect. In conclusion, microRNA-211 derived from BMSC-EXO can regulate osteoclasts differentiation, suggesting that it might be used as a potential approach for treating osteoporosis.

2023 ◽  
Vol 76 (07) ◽  
pp. 6374-2023 ◽  

Recently, interest in glucagon-like peptide-1 (GLP-1) and other peptides derived from preproglucagon has increased significantly. GLP-1 is a 30-amino acid peptide hormone produced in L-type enteroendocrine cells as a response to food intake. GLP-1 is rapidly metabolized and inactivated by the dipeptidyl peptidase IV enzyme before the hormone leaves the intestine, which increases the likelihood that GLP-1 action is transmitted through sensory neurons in the intestine and liver through the GLP-1 receptor. The main actions of GLP-1 are to stimulate insulin secretion (i.e. act as incretin hormone) and inhibit glucagon secretion, thus contributing to the reduction of postprandial glucose spikes. GLP-1 also inhibits motility and gastrointestinal secretion, and therefore acts as part of the „small bowel brake” mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these effects, GLP-1 or GLP-1 receptor agonists are now increasingly used to treat type 2 diabetes. Reduced GLP-1 secretion may contribute to the development of obesity, and excessive secretion may be responsible for postprandial reactive hypoglycemia. The use of GLP-1 agonists opens up new possibilities for the treatment of type 2 diabetes and other metabolic diseases. In the last two decades, many interesting studies covering both the physiological and pathophysiological role of GLP-1 have been published, and our understanding of GLP-1 has broadened significantly. In this review article, we have tried to describe our current understanding of how GLP-1 works as both a peripheral hormone and as a central neurotransmitter in health and disease. We focused on its biological effects on the body and the potential clinical application in relation to current research.

2022 ◽  
Vol 12 ◽  
An-Ping Shi ◽  
Xi-Yang Tang ◽  
Yan-Lu Xiong ◽  
Kai-Fu Zheng ◽  
Yu-Jian Liu ◽  

LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.

2022 ◽  
Vol 11 (2) ◽  
pp. 448
Julia Maruani ◽  
Pierre A. Geoffroy

Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood

2022 ◽  
Yoshie Yachi ◽  
Takeshi Kai ◽  
Yusuke Matsuya ◽  
Yuho Hirata ◽  
Yuji Yoshii ◽  

Abstract Magnetic resonance-guided radiotherapy (MRgRT) has been developed and installed in recent decades for external radiotherapy in several clinical facilities. The Lorentz force modulates dose distribution by charged particles in MRgRT; however, the impact by this force on low-energy electron track structure and early DNA damage induction remain unclear. In this study, we estimated features of electron track structure and biological effects in a static magnetic field (SMF) using a general-purpose Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that enables us to simulate low-energy electrons down to 1 meV by track-structure mode. The macroscopic dose distributions by electrons above approximately 300 keV initial energy in liquid water are changed by both perpendicular and parallel SMFs against the incident direction, indicating that the Lorentz force plays an important role in calculating dose within tumours. Meanwhile, DNA damage estimation based on the spatial patterns of atomic interactions indicates that the initial yield of DNA double-strand breaks (DSBs) is independent of the SMF intensity. The DSB induction is predominantly attributed to the secondary electrons below a few tens of eV, which are not affected by the Lorentz force. Our simulation study suggests that treatment planning for MRgRT can be made with consideration of only changed dose distribution.

Nano Express ◽  
2022 ◽  
Shun-ichi Eto ◽  
Kazuma Higashisaka ◽  
Aoi Koshida ◽  
Kenta Sato ◽  
Mao Ogura ◽  

Abstract Due to their innovative functions, the use of nanoparticles in various industries has been expanding. However, a key concern is whether nanoparticles induce unexpected biological effects. Although many studies have focused on innate immunity, information on whether nanoparticles induce biological responses through effects on acquired immunity is sparse. Here, to assess the effects of amorphous silica nanoparticles on acquired immunity, we analyzed changes in acute toxicities after pretreatment with amorphous silica nanoparticles (50 nm in diameter; nSP50). Pretreatment with nSP50 biochemically and pathologically exacerbated nSP50-induced hepatic damage in immunocompetent mice. However, pretreatment with nSP50 did not exacerbate hepatic damage in immunodeficient mice. Consistent with this, the depletion of CD8+ cells with an anti-CD8 antibody in animals pretreated with nSP50 resulted in lower plasma levels of hepatic injury markers such as ALT and AST after an intravenous administration than treatment with an isotype-matched control antibody. Finally, stimulation of splenocytes promoted the release of IFN-γ in nSP50-pretreated mice regardless of the stimulator used. Moreover, the blockade of IFN-γ decreased plasma levels of ALT and AST levels in nSP50-pretreated mice. Collectively, these data show that nSP50-induced acquired immunity leads to exacerbation of hepatic damage through the activation of cytotoxic T lymphocytes.

2022 ◽  
Valid Gahramanov ◽  
Moria Oz ◽  
Tzemach Aouizerat ◽  
Mali Salmon-Divon ◽  
Tovit Rosenzweig ◽  

Abstract Plants with medicinal properties are usually identified based on traditional medicine knowledge or using low-throughput screens for specific pharmacological activities. Here, we suggest a different approach to uncover a range of pharmacological activities of a chosen plant extract without the need for functional screening. This tactic predicts biological activities of a plant extract based on pathway analysis of transcriptome changes caused by the extract in mammalian cell culture. In this work, we identified transcriptome changes after exposure of cultured cells to an extract of the medicinal plant Sarcopoterium spinosum. Gene Set Enrichment Analysis (GSEA) confirmed known anti-inflammatory and anti-cancer activities of the extract and predicted novel biological effects on oxidative phosphorylation and interferon pathways. Experimental validation of these pathways uncovered strong activation of autophagy, including mitophagy, and astounding protection from SARS-CoV-2 infection. Our study shows that gene expression analysis alone is insufficient for predicting biological effects since some of the changes reflect compensatory effects, and additional biochemical tests provide necessary corrections. In conclusion, this study defines the advantages and limitations of an approach towards predicting the biological and medicinal effects of plant extracts based on transcriptome changes caused by these extracts in mammalian cells.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 467
Rima Urbstaite ◽  
Lina Raudone ◽  
Mindaugas Liaudanskas ◽  
Valdimaras Janulis

Phenolic compounds in the fruit of American cranberry (Vaccinium macrocarpon Aiton) determine the antioxidant, anti-inflammatory, anticancer, and other biological effects. The berries are used in the production of medicinal preparations and food supplements, which highlights the importance of qualitative and quantitative analysis of phenolic compounds in cranberry fruit raw material. The aim of our study was to develop and validate an efficient, cost-effective, reproducible, and fast UPLC-DAD methodology for the evaluation of the qualitative and quantitative composition of phenolic compounds in raw material and preparations of American cranberry fruit. During the development of the methodology, chlorogenic acid and the following flavonols were identified in cranberry fruit samples: myricetin-3-galactoside, quercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-α-L-arabinopyranoside, quercetin-3-α-L-arabinofuranoside, quercetin-3-rhamnoside, myricetin, and quercetin. The developed and optimized UPLC-DAD methodology was validated according to the guidelines of the International Council for Harmonization (ICH), evaluating the following parameters: range, specificity, linearity (R2 > 0.999), precision (%RSD < 2%), LOD (0.38–1.01 µg/mL), LOQ (0.54–3.06 µg/mL), and recovery (80–110%). The developed methodology was applied to evaluate the qualitative and quantitative composition of phenolic compounds in fruit samples of cranberry cultivars ‘Baifay’, ‘Bergman’, ‘Prolific’, and ‘Searles’, as well as ‘Bain-MC’ and ‘BL-12′ clones. In the tested samples, the majority (about 70%) of the identified flavonols were quercetin derivatives. The greatest amount of quercetin-3-galactoside (1035.35 ± 4.26 µg/g DW) was found in fruit samples of the ‘Searles’ cultivar, and the greatest amount of myricetin-3-galactoside (940.06 ± 24.91 µg/g DW) was detected in fruit samples of the ‘Woolman’ cultivar.

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 38
Wangbo Jiao ◽  
Tingbin Zhang ◽  
Mingli Peng ◽  
Jiabao Yi ◽  
Yuan He ◽  

Cancer is the top cause of death globally. Developing smart nanomedicines that are capable of diagnosis and therapy (theranostics) in one–nanoparticle systems are highly desirable for improving cancer treatment outcomes. The magnetic nanoplatforms are the ideal system for cancer theranostics, because of their diverse physiochemical properties and biological effects. In particular, a biocompatible iron oxide nanoparticle based magnetic nanoplatform can exhibit multiple magnetic–responsive behaviors under an external magnetic field and realize the integration of diagnosis (magnetic resonance imaging, ultrasonic imaging, photoacoustic imaging, etc.) and therapy (magnetic hyperthermia, photothermal therapy, controlled drug delivery and release, etc.) in vivo. Furthermore, due to considerable variation among tumors and individual patients, it is a requirement to design iron oxide nanoplatforms by the coordination of diverse functionalities for efficient and individualized theranostics. In this article, we will present an up–to–date overview on iron oxide nanoplatforms, including both iron oxide nanomaterials and those that can respond to an externally applied magnetic field, with an emphasis on their applications in cancer theranostics.

Sign in / Sign up

Export Citation Format

Share Document