scholarly journals Purification of Components of the Translation Elongation Factor Complex of Plasmodium falciparum by Tandem Affinity Purification

2007 ◽  
Vol 6 (4) ◽  
pp. 584-591 ◽  
Author(s):  
Sachiko Takebe ◽  
William Harold Witola ◽  
Bernd Schimanski ◽  
Arthur Günzl ◽  
Choukri Ben Mamoun

ABSTRACT Plasmodium falciparum is the causative agent of severe human malaria, responsible for over 2 million deaths annually. Of the 5,300 polypeptides predicted to control the parasite life cycle in mosquitoes and humans, 60% are of unknown function. A major challenge of malaria postgenomic biology is to understand how the 5,300 predicted proteins coexist and interact to perform the essential tasks that define the complex life cycle of the parasite. One approach to assign function to these proteins is by identifying their physiological partners. Here we describe the use of tandem affinity purification (TAP) and mass spectrometry for identification of native protein interactions and purification of protein complexes in P. falciparum. Transgenic parasites were generated which express the translation elongation factor PfEF-1β harboring a C-terminal PTP tag which consists of the protein C epitope, a tobacco etch virus protease cleavage site, and two protein A domains. Purification of PfEF-1β-PTP from crude extracts followed by mass spectrometric analysis revealed, in addition to the tagged protein itself, the presence of the native PfEF-1β, the G-protein PfEF-1α, and two new proteins that we named PfEF-1γ and PfEF-1δ based on their homology to other eukaryotic γ and δ translation elongation factor subunits. These data, which constitute the first application of TAP for purification of a protein complex under native conditions in P. falciparum, revealed that the translation elongation complex in this organism contains at least two subunits of PfEF-1β. The success of this approach will set the stage for a systematic analysis of protein interactions in this important human pathogen.

2018 ◽  
Vol 3 ◽  
pp. 70 ◽  
Author(s):  
Nicolas M.B. Brancucci ◽  
Mariana De Niz ◽  
Timothy J. Straub ◽  
Deepali Ravel ◽  
Lauriane Sollelis ◽  
...  

Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.


2007 ◽  
Vol 23 (4) ◽  
pp. 307-317 ◽  
Author(s):  
D. S. Kanibolotsky ◽  
A. V. Novosil'naya ◽  
B. S. Negrutskii ◽  
A. V. El'skaya

Sign in / Sign up

Export Citation Format

Share Document