scholarly journals Infection of Primary Human Bronchial Epithelial Cells by Haemophilus influenzae: Macropinocytosis as a Mechanism of Airway Epithelial Cell Entry

1999 ◽  
Vol 67 (8) ◽  
pp. 4161-4170 ◽  
Author(s):  
Margaret R. Ketterer ◽  
Jian Q. Shao ◽  
Douglas B. Hornick ◽  
Ben Buscher ◽  
Venkata K. Bandi ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae is an exclusive human pathogen which infects the respiratory epithelium. We have initiated studies to explore the interaction of the nontypeableH. influenzae strain 2019 with primary human airway epithelial cells by electron and confocal microscopy. Primary human airway cell cultures were established as monolayers on glass collagen-coated coverslips or on semipermeable membranes at an air-fluid interface. Scanning electron microscopy indicated that bacteria adhered to nonciliated cells in the population. The surface of infected cells showed evidence of cytoskeletal rearrangements manifested by microvilli and lamellipodia extending toward and engaging bacteria. Confocal microscopic analysis demonstrated that infection induced actin polymerization with an increase in cortical actin as well as evidence of actin strands around the bacteria. Transmission electron microscopic analysis showed lamellipodia and microvilli surrounding organisms, as well as organisms adherent to the cell surface. These studies also demonstrated the presence of bacteria within vacuoles inside of airway cells. Confocal microscopic studies with Texas red-labeled dextran (molecular weight, 70,000) indicated that H. influenzae cells were entering cells by the process of macropinocytosis. These studies indicate that nontypeable H. influenzae can initiate cytoskeletal rearrangement within human airway epithelium, resulting in internalization of the bacteria within nonciliated human airway epithelial cells by the process of macropinocytosis.

1999 ◽  
Vol 277 (3) ◽  
pp. L465-L471 ◽  
Author(s):  
Alessandro Celi ◽  
Silvana Cianchetti ◽  
Stefano Petruzzelli ◽  
Stefano Carnevali ◽  
Filomena Baliva ◽  
...  

Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 ± 3 to 49 ± 7% (SE). A significant increase from 17 ± 4 to 39 ± 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin β-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.


Sign in / Sign up

Export Citation Format

Share Document