scholarly journals Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

2005 ◽  
Vol 73 (11) ◽  
pp. 7180-7189 ◽  
Author(s):  
Shawn J. Berens ◽  
Kelly A. Brayton ◽  
John B. Molloy ◽  
Russell E. Bock ◽  
Ala E. Lew ◽  
...  

ABSTRACT The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the complete msa-2 locus was characterized from 12 Australian B. bovis strains and isolates, including two vaccine strains and eight vaccine breakthrough isolates, and compared to the loci in previously and newly characterized American strains. In contrast to American strains, the msa-2 loci of all Australian strains and isolates examined contain, in addition to msa-2c, only a solitary gene (designated msa-2a/b) closely related to American strain msa-2a and msa-2b. Nevertheless, the proteins encoded by these genes are quite diverse both between and within geographic regions and harbor evidence of genetic exchange among other VMSA family members, including msa-1. Moreover, all but one of the Australian breakthrough isolate MSA-2a/b proteins is markedly different from the vaccine strain from which immune escape occurred, consistent with their role in strain-specific protective immunity. The densest distribution of polymorphisms occurs in a hypervariable region (HVR) within the carboxy third of the molecule that is highly proline rich. Variation in length and content of the HVR is primarily attributable to differences in the order and number of degenerate nucleotide repeats encoding three motifs of unknown function.

2006 ◽  
Vol 74 (6) ◽  
pp. 3663-3667 ◽  
Author(s):  
Tanya LeRoith ◽  
Shawn J. Berens ◽  
Kelly A. Brayton ◽  
Stephen A. Hines ◽  
Wendy C. Brown ◽  
...  

ABSTRACT A hypervariable region (HVR) previously identified in the carboxy-terminal one-third of the Babesia bovis variable merozoite surface antigen family was more extensively analyzed in merozoite surface antigen 1 (MSA-1) from 16 strains and isolates. The MSA-1 HVR is proline rich and contains three semiconserved motifs nearly identical to those described for the related family member MSA-2. Two MSA-1-specific monoclonal antibodies previously shown to be reactive with the merozoite surface bound to a recombinant construct encoding the HVR, indicating that the HVR is surface exposed and accessible to antibody binding. Importantly, these surface-reactive, HVR-specific monoclonal antibodies were capable of inhibiting merozoite infectivity of the host erythrocyte in vivo. The results indicate that the MSA-1 HVR is involved in erythrocyte invasion and suggest that selection of MSA-1 variants may be driven by invasion-blocking antibodies.


2005 ◽  
Vol 73 (9) ◽  
pp. 5388-5394 ◽  
Author(s):  
Tanya LeRoith ◽  
Kelly A. Brayton ◽  
John B. Molloy ◽  
Russell E. Bock ◽  
Stephen A. Hines ◽  
...  

ABSTRACT The Babesia bovis merozoite surface antigen 1 (MSA-1) is an immunodominant membrane glycoprotein that is the target of invasion-blocking antibodies. While antigenic variation has been demonstrated in MSA-1 among strains from distinct geographical areas, the extent of sequence variation within a region where it is endemic and the effect of variation on immunologic cross-reactivity have not been assessed. In this study, sequencing of MSA-1 from two Australian B. bovis vaccine strains and 14 breakthrough isolates from vaccinated animals demonstrated low sequence identity in the extracellular region of the molecule, ranging from 19.8 to 46.7% between the T vaccine strain and eight T vaccine breakthrough isolates, and from 18.7 to 99% between the K vaccine strain and six K vaccine breakthrough isolates. Although MSA-1 amino acid sequence varied substantially among strains, overall predicted regions of hydrophilicity and hydrophobicity in the extracellular domain were conserved in all strains examined, suggesting a conserved functional role for MSA-1 despite sequence polymorphism. Importantly, the antigenic variation created by sequence differences resulted in a lack of immunologic cross-reactivity among outbreak strains using sera from animals infected with the B. bovis vaccine strains. Additionally, sera from cattle hyperinfected with the Mexico strain of B. bovis and shown to be clinically immune did not cross-react with MSA-1 from any other isolate tested. The results indicate that isolates of B. bovis capable of evading vaccine-induced immunity contain an msa-1 gene that is significantly different from the msa-1 of the vaccine strain, and that the difference can result in a complete lack of cross-reactivity between MSA-1 from vaccine and breakthrough strains in immunized animals.


2000 ◽  
Vol 68 (12) ◽  
pp. 6865-6870 ◽  
Author(s):  
Carlos E. Suarez ◽  
Monica Florin-Christensen ◽  
Stephen A. Hines ◽  
Guy H. Palmer ◽  
Wendy C. Brown ◽  
...  

ABSTRACT The Babesia bovis merozoite surface antigen 1 (MSA-1), a member of the variable merozoite surface antigen (VMSA) family, is an immunodominant glycoprotein which elicits antibodies that inhibit erythrocyte invasion. While antigenic polymorphism is a general feature of vmsa genes, the molecular basis and extent ofmsa-1 sequence polymorphism have not been well characterized. In this study we defined the msa-1 locus in the biologically cloned Mexico Mo7 strain of B. bovis and identified the sequence differences between MSA-1 antigenically dissimilar strains. We then determined whether sequences conserved between distinct msa-1 alleles would induce cross-reactive CD4+ T lymphocytes or inhibitory antibodies. Themsa-1 locus in Mo7 contains a single msa-1 gene flanked by transcribed genes with no sequence homology to members of the VMSA gene family. Argentina B. bovis strains R1A and S2P have msa-1 genes with amino acid sequences that are 98.8% identical to each other, and antibodies against S2P MSA-1 cross-react with native R1A MSA-1. In contrast, identity between the Argentina and Mexico Mo7 msa-1 alleles is only 52%, with no continuous stretch of identity longer than 16 amino acids. Despite limited sequence conservation, antibodies against R1A MSA-1 were able to inhibit invasion of erythrocytes by Mo7 merozoites. The results indicate that inhibition-sensitive epitopes are conserved despite significant sequence divergence between Mexico and Argentina strain alleles and support a conserved functional role for polymorphic MSA-1 in erythrocyte invasion.


2002 ◽  
Vol 70 (11) ◽  
pp. 6448-6455 ◽  
Author(s):  
Juan Mosqueda ◽  
Terry F. McElwain ◽  
Guy H. Palmer

ABSTRACT The Babesia bovis merozoite surface antigen 2 (MSA-2) locus encodes four proteins, MSA-2a1, -2a2, -2b, and -2c. With the use of specific antibodies, each MSA-2 protein was shown to be expressed on the surface of live extracellular merozoites and coexpression on single merozoites was confirmed. Individual antisera against MSA-2a, MSA-2b, and MSA-2c significantly inhibited merozoite invasion of bovine erythrocytes. As tick-derived sporozoites also directly invade erythrocytes, expression of each MSA-2 protein on the sporozoite surface was examined and verified. Finally, statistically significant inhibition of sporozoite binding to the erythrocytes was demonstrated by using antisera specific for MSA-2a, MSA-2b, and MSA-2c. These results indicate an important role for MSA-2 proteins in the initial binding and invasion of host erythrocytes and support the hypothesis that sporozoites and merozoites use common surface molecules in erythrocyte invasion.


2002 ◽  
Vol 70 (3) ◽  
pp. 1599-1603 ◽  
Author(s):  
Juan Mosqueda ◽  
Terry F. McElwain ◽  
David Stiller ◽  
Guy H. Palmer

ABSTRACT We examined Babesia bovis sporozoites for the expression of two molecules, merozoite surface antigen 1 (MSA-1) and rhoptry-associated protein 1 (RAP-1), that are postulated to be involved in the invasion of host erythrocytes. Both MSA-1 and RAP-1 were transcribed and expressed in infectious sporozoites. Importantly, monospecific MSA-1 and RAP-1 antisera each inhibited sporozoite invasion of erythrocytes in vitro. This is the first identification of antigens expressed in Babesia sp. sporozoites and establishes that, at least in part, sporozoites and merozoites share common targets of antibody mediated inhibition of erythrocyte invasion.


2014 ◽  
Vol 63 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Muncharee Tattiyapong ◽  
Thillaiampalam Sivakumar ◽  
Adrian Patalinghug Ybanez ◽  
Rochelle Haidee Daclan Ybanez ◽  
Zandro Obligado Perez ◽  
...  

1992 ◽  
Vol 55 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Douglas P. Jasmer ◽  
David W. Reduker ◽  
Stephen A. Hines ◽  
Lance E. Perryman ◽  
Travis C. McGuire

2015 ◽  
Vol 30 ◽  
pp. 288-295 ◽  
Author(s):  
Naoaki Yokoyama ◽  
Thillaiampalam Sivakumar ◽  
Bumduuren Tuvshintulga ◽  
Kyoko Hayashida ◽  
Ikuo Igarashi ◽  
...  

2002 ◽  
Vol 70 (7) ◽  
pp. 3566-3575 ◽  
Author(s):  
Monica Florin-Christensen ◽  
Carlos E. Suarez ◽  
Stephen A. Hines ◽  
Guy H. Palmer ◽  
Wendy C. Brown ◽  
...  

ABSTRACT Members of the variable merozoite surface antigen (vmsa) gene family of Babesia bovis encode membrane proteins involved in erythrocyte invasion. In this study, we have identified and sequenced the complete 8.3-kb genomic locus containing msa-2, a member of the vmsa family, in the biologically cloned Mexico Mo7 strain. Four tandemly arranged copies of msa-2-related genes were found in the locus. The four genes, designated msa-2a1 (which corresponds to the originally described msa-2 gene), msa-2a2 , msa-2b, and msa-2c, were shown to be transcribed and expressed and encode proteins with open reading frames ranging in size from 266 (MSA-2c) to 317 (MSA-2a1) amino acids. MSA-2a1 and -2a2 are the most closely related of the four proteins (90% identity), differing by (i) the number of 24-amino-acid repeats that comprise a surface-exposed B-cell epitope and (ii) the presence of a 32-amino-acid area of recombination between MSA-2a2 and -2b. In contrast, msa-2c is most closely related to the previously described babr 0.8 gene in Australia strains of B. bovis. Comparison of MSA-2 proteins in the Argentina R1A strain of B. bovis with the Mexico Mo7 clone revealed a relatively high degree of conservation (83.6, 69.4, 79.1, and 88.7% amino acid identity for MSA-2a1, -2a2, -2b, and -2c, respectively), in contrast to the extensive MSA-1 sequence variation (52% identity) between the same two strains. Postinfection bovine immune serum contains antibodies that bound to each of the recombinant MSA-2 proteins. Blocking assays demonstrated the presence of unique B-cell epitopes in MSA-2a1, -2b, and -2c. The results support the evolution of the msa-2 locus through at least two gene duplications, with selection for multiple related but antigenically distinct merozoite surface proteins.


Sign in / Sign up

Export Citation Format

Share Document