scholarly journals Chromosomal gene capture mediated by the Pseudomonas putida TOL catabolic plasmid.

1994 ◽  
Vol 176 (15) ◽  
pp. 4635-4641 ◽  
Author(s):  
M I Ramos-González ◽  
M A Ramos-Díaz ◽  
J L Ramos
2003 ◽  
Vol 69 (6) ◽  
pp. 3263-3271 ◽  
Author(s):  
Woojun Park ◽  
Che Ok Jeon ◽  
Amy M. Hohnstock-Ashe ◽  
Stephen C. Winans ◽  
Gerben J. Zylstra ◽  
...  

ABSTRACT Hybridization and restriction fragment length polymorphism data (K. G. Stuart-Keil, A. M. Hohnstock, K. P. Drees, J. B. Herrick, and E. L. Madsen, Appl. Environ. Microbiol. 64:3633-3640, 1998) have shown that pCg1, a naphthalene catabolic plasmid carried by Pseudomonas putida Cg1, is homologous to the archetypal naphthalene catabolic plasmid, pDTG1, in P. putida NCIB 9816-4. Sequencing of the latter plasmid allowed PCR primers to be designed for amplifying and sequencing the conjugal transfer region in pCg1. The mating pair formation (mpf) gene, mpfA encoding the putative precursor of the conjugative pilin subunit from pCg1, was identified along with other trb-like mpf genes. Sequence comparison revealed that the 10 mpf genes in pCg1 and pDTG1 are closely related (61 to 84% identity) in sequence and operon structure to the putative mpf genes of catabolic plasmid pWW0 (TOL plasmid of P. putida) and pM3 (antibiotic resistance plasmid of Pseudomonas. spp). A polar mutation caused by insertional inactivation in mpfA of pCg1 and reverse transcriptase PCR analysis of mRNA showed that this mpf region was involved in conjugation and was transcribed from a promoter located upstream of an open reading frame adjacent to mpfA. lacZ transcriptional fusions revealed that mpf genes of pCg1 were expressed constitutively both in liquid and on solid media. This expression did not respond to host exposure to naphthalene. Conjugation frequency on semisolid media was consistently 10- to 100-fold higher than that in liquid media. Thus, conjugation of pCg1 in P. putida Cg1 was enhanced by expression of genes in the mpf region and by surfaces where conditions fostering stable, high-density cell-to-cell contact are manifest.


2020 ◽  
Author(s):  
Juhyun Kim ◽  
Angel Goñi-Moreno ◽  
Víctor de Lorenzo

ABSTRACTDespite intensive research on the biochemical and regulatory features of the archetypal catabolic TOL system borne by pWW0 of Pseudomonas putida mt-2, the physical arrangement and tridimensional logic of the xyl gene expression flow remains unknown. In this work, the spatial distribution of specific xyl mRNAs with respect to the host nucleoid, the TOL plasmid and the ribosomal pool has been investigated. In situ hybridization of target transcripts with fluorescent oligonucleotide probes revealed that xyl mRNAs cluster in discrete foci, adjacent but clearly separated from the TOL plasmid and the cell nucleoid. Also, they co-localize with ribosome-rich domains of the intracellular milieu. This arrangement was kept even when the xyl genes were artificially relocated at different chromosomal locations. The same happened when genes were expressed through a heterologous T7 polymerase-based system, which originated mRNA foci outside the DNA. In contrast, rifampicin treatment, known to ease crowding, blurred the confinement of xyl transcripts. This suggested that xyl mRNAs intrinsically run away from their initiation sites to ribosome-rich points for translation—rather than being translated coupled to transcription. Moreover, the results suggest that the distinct subcellular motion of xyl mRNAs results both from innate properties of the sequence at stake and the physical forces that keep the ribosomal pool away from the nucleoid in P. putida. This scenario is discussed on the background of current knowledge on the 3D organization of the gene expression flow in other bacteria and the environmental lifestyle of this soil microorganism.IMPORTANCEThe transfer of information between DNA, RNA and proteins in a bacterium is often compared to the decoding of a piece of software in a computer. However, the tridimensional layout and the relational logic of the cognate biological hardware i.e. the nucleoid, the RNA polymerase and the ribosomes, are habitually taken for granted. In this work we inspected the localization and fate of the transcripts that stem from the archetypal biodegradative plasmid pWW0 of soil bacterium Pseudomonas putida KT2440 through the non-homogenous milieu of the bacterial cytoplasm. The results expose that— similarly to computers also—the material components that enable the expression flow are well separated physically and they decipher the sequences through a distinct tridimensional arrangement with no indication of transcription/translation coupling. We argue that the resulting subcellular architecture enters an extra regulatory layer that obeys a species-specific positional code that accompanies the environmental lifestyle of this bacterium.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Juhyun Kim ◽  
Angel Goñi-Moreno ◽  
Víctor de Lorenzo

ABSTRACT Despite intensive research on the biochemical and regulatory features of the archetypal catabolic TOL system borne by pWW0 of Pseudomonas putida strain mt-2, the physical arrangement and tridimensional logic of the xyl gene expression flow remains unknown. In this work, the spatial distribution of specific xyl mRNAs with respect to the host nucleoid, the TOL plasmid, and the ribosomal pool has been investigated. In situ hybridization of target transcripts with fluorescent oligonucleotide probes revealed that xyl mRNAs cluster in discrete foci, adjacent but clearly separated from the TOL plasmid and the cell nucleoid. Also, they colocalize with ribosome-rich domains of the intracellular milieu. This arrangement was maintained even when the xyl genes were artificially relocated to different chromosomal locations. The same held true when genes were expressed through a heterologous T7 polymerase-based system, which likewise led to mRNA foci outside the DNA. In contrast, rifampin treatment, known to ease crowding, blurred the confinement of xyl transcripts. This suggested that xyl mRNAs exit from their initiation sites to move to ribosome-rich points for translation—rather than being translated coupled to transcription. Moreover, the results suggest the distinct subcellular motion of xyl mRNAs results from both innate properties of the sequences and the physical forces that keep the ribosomal pool away from the nucleoid in P. putida. This scenario is discussed within the background of current knowledge on the three-dimensional organization of the gene expression flow in other bacteria and the environmental lifestyle of this soil microorganism. IMPORTANCE The transfer of information between DNA, RNA, and proteins in a bacterium is often compared to the decoding of a piece of software in a computer. However, the tridimensional layout and the relational logic of the cognate biological hardware, i.e., the nucleoid, the RNA polymerase, and the ribosomes, are habitually taken for granted. In this work, we inspected the localization and fate of the transcripts that stem from the archetypal biodegradative plasmid pWW0 of soil bacterium Pseudomonas putida strain KT2440 through the nonhomogeneous milieu of the bacterial cytoplasm. The results expose that—similarly to computers—the material components that enable the expression flow are well separated physically and they decipher the sequences through a distinct tridimensional arrangement with no indication of transcription/translation coupling. We argue that the resulting subcellular architecture enters an extra regulatory layer that obeys a species-specific positional code and accompanies the environmental lifestyle of this bacterium.


1978 ◽  
Vol 31 (1) ◽  
pp. 93-96 ◽  
Author(s):  
G. P. White ◽  
N. W. Dunn

SUMMARYThe previously isolated plasmid pND3, arising from recombination between the TOL catabolic plasmid and the R plasmid R91, was transduced by pf16 inPseudomonas putida. Apparent transductional shortening was evident in 25% of the transduced pND3 plasmids. Transductants were isolated which had segregated the antibiotic resistance marker, transfer ability and some of the catabolic functions of the parent plasmid.


1978 ◽  
Vol 32 (3) ◽  
pp. 249-255 ◽  
Author(s):  
L. Hewetson ◽  
H. M. Dunn ◽  
N. W. Dunn

SUMMARYEvidence is presented that a strain ofPseudomonas putidaharbours a catabolic plasmid which encodes for the degradation ofp-cresol through the protocatechuateorthocleavage pathway. This plasmid can transfer giving approximately 10−3transconjugants per donor cell, can be cured with mitomycin C, belongs to the P-9 plasmid incompatibility group and can be transduced with the bacteriophage pf16.


1993 ◽  
Vol 39 (4) ◽  
pp. 357-362 ◽  
Author(s):  
Hai-Meng Tan ◽  
Karen P.-Y. Fong

Pseudomonas putida ML2 contains a large catabolic plasmid, pHMT112, carrying genes that encode the dioxygenase and dehydrogenase involved in the catabolism of benzene via the ortho or β-ketoadipate pathway. pHMT112 was derived from a larger and less stable plasmid in P. putida ML2 following growth on succinate as carbon and energy source but was, however, stably maintained in P. putida even in the absence of selection for growth on benzene. Cleavage sites for the restriction endonucleases DraI, XbaI, and BamHI were mapped on the plasmid. A region of the plasmid, downstream of the benzene dioxygenase genes (bedC1C2BA), was found to encode the cis-benzene dihydrodiol dehydrogenase gene (bedD). Recombinant Escherichia coli containing bedC1C2BAD genes was found to express benzene dioxygenase and dehydrogenase activity, indicated by the production of catechol when incubated in the presence of benzene. Hybridization using benzene dioxygenase genes as probes was used to construct a restriction map of the 35.5-kb XhoI–DraI fragment on which the bed operon was located.Key words: Pseudomonas putida, catabolic plasmid, dioxygenase, dehydrogenase.


Sign in / Sign up

Export Citation Format

Share Document