scholarly journals Domain Organization of Lentiviral and Betaretroviral Surface Envelope Glycoproteins Modeled with AlphaFold

2021 ◽  
Author(s):  
Isidro Hötzel

The surface envelope glycoproteins of non-primate lentiviruses and betaretroviruses share sequence similarity with the inner proximal domain β-sandwich of the human immunodeficiency virus type 1 (HIV-1) gp120 glycoprotein that faces the transmembrane glycoprotein as well as patterns of cysteine and glycosylation site distribution that points to a similar two-domain organization in at least some lentiviruses. Here, high reliability models of the surface glycoproteins obtained with the AlphaFold algorithm are presented for the gp135 glycoprotein of the small ruminant caprine arthritis-encephalitis (CAEV) and visna lentiviruses and the betaretroviruses jaagsiekte sheep retrovirus (JSRV), mouse mammary tumor virus (MMTV) and consensus human endogenous retrovirus type K (HERV-K). The models confirm and extend the inner domain structural conservation in these viruses and identify two outer domains with a putative receptor binding site in the CAEV and visna virus gp135. The location of that site is consistent with patterns of sequence conservation and glycosylation site distribution in gp135. In contrast, a single domain is modeled for the JSRV, MMTV and HERV-K betaretrovirus envelope proteins that is highly conserved structurally in the proximal region and structurally diverse in apical regions likely to interact with cell receptors. The models presented here identify sites in small ruminant lentivirus and betaretrovirus envelope glycoproteins likely to be critical for virus entry and virus neutralization by antibodies and will facilitate their functional and structural characterization. Importance Structural information on the surface envelope proteins of lentiviruses and related betaretroviruses is critical to understand mechanisms of virus-host interactions. However, experimental determination of these structures has been challenging and only the structure of the human immunodeficiency virus type 1 gp120 has been determined. The advent of the AlphaFold artificial intelligence method for structure prediction allows high-quality modeling of the structures of small ruminant lentiviral and betaretroviral surface envelope proteins. The models are consistent with much of previously described experimental data, show regions likely to interact with receptors and identify domains that may be involved in mechanisms of antibody neutralization resistance in the small ruminant lentiviruses. The models will allow more precise design of mutants to further determine mechanisms of viral entry and immune evasion in this group of viruses and constructs for structure of these surface envelope proteins.

2002 ◽  
Vol 76 (9) ◽  
pp. 4634-4642 ◽  
Author(s):  
Xinzhen Yang ◽  
Juliette Lee ◽  
Erin M. Mahony ◽  
Peter D. Kwong ◽  
Richard Wyatt ◽  
...  

ABSTRACT The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.


2005 ◽  
Vol 79 (6) ◽  
pp. 3500-3508 ◽  
Author(s):  
Xinzhen Yang ◽  
Svetla Kurteva ◽  
Sandra Lee ◽  
Joseph Sodroski

ABSTRACT The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.


2000 ◽  
Vol 74 (12) ◽  
pp. 5716-5725 ◽  
Author(s):  
Xinzhen Yang ◽  
Michael Farzan ◽  
Richard Wyatt ◽  
Joseph Sodroski

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins function as a membrane-anchored trimer of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Previously, we reported three approaches to stabilize soluble trimers containing parts of the gp41 ectodomains: addition of GCN4 trimeric helices, disruption of the cleavage site between gp120 and gp41, and introduction of cysteines in the gp41 coiled coil to form intersubunit disulfide bonds. Here, we applied similar approaches to stabilize soluble gp140 trimers including the complete gp120 and gp41 ectodomains. A combination of fusion with the GCN4 trimeric sequences and disruption of the gp120-gp41 cleavage site resulted in relatively homogeneous gp140 trimers with exceptional stability. The gp120 epitopes recognized by neutralizing antibodies are intact and exposed on these gp140 trimers. By contrast, the nonneutralizing antibody epitopes on the gp120 subunits of the soluble trimers are relatively occluded compared with those on monomeric gp120 preparations. This antigenic similarity to the functional HIV-1 envelope glycoproteins and the presence of the complete gp41 ectodomain should make the soluble gp140 trimers useful tools for structural and immunologic studies.


1991 ◽  
Vol 174 (6) ◽  
pp. 1557-1563 ◽  
Author(s):  
S B Jiang ◽  
K Lin ◽  
A R Neurath

Human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (gp120 and gp41) elicit virus-neutralizing antibodies (VNAB) and also antibodies enhancing HIV-1 infection (EAB). Several epitopes eliciting VNAB have been defined, the principal virus-neutralizing determinant being assigned to the V3 loop of gp120. To provide a background for a rational design of anti-HIV vaccines, it also appears important to define domains eliciting EAB. This was accomplished by screening antisera against synthetic peptides covering almost the entire sequence of gp120/gp41 for their enhancing effects on HIV-1 infection of MT-2 cells, a continuous T cell line. Many (16/30) of the antisera significantly enhanced HIV-1 in the presence of human complement. Antibodies to complement receptor type 2 (CR2) abrogated the antibody-mediated enhancement of HIV-1 infection. Antisera to V3 hypervariable loops of 21 distinct HIV-1 isolates were also tested for their enhancing effects on HIV-1IIIB infection. 11 of these sera contained VNAB and 10 enhanced HIV-1IIIB infection. All antisera with virus-enhancing activity contained antibodies crossreactive with the V3 loop of HIV-1IIIB, and the virus-enhancing activity increased with increasing serological crossreactivity. These results suggest that immunization with antigens encompassing V3 loops may elicit EAB rather than protective antibodies if epitopes on the immunogen and the predominant HIV-1 isolate infecting a population are insufficiently matched, i.e., crossreactive serologically but not at the level of virus neutralization.


Sign in / Sign up

Export Citation Format

Share Document