t4 bacteriophage
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 18)

H-INDEX

34
(FIVE YEARS 1)

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12748
Author(s):  
Sergey Anatoljevich Potapov ◽  
Irina Vasilievna Tikhonova ◽  
Andrey Yurjevich Krasnopeev ◽  
Maria Yurjevna Suslova ◽  
Natalia Albertovna Zhuchenko ◽  
...  

Lake Baikal phage communities are important for lake ecosystem functioning. Here we describe the diversity of T4-bacteriophage associated with the bacterial fraction of filtered water samples collected from the pelagic zone, coastal zone and shallow bays. Although the study of the diversity of phages for the g23 gene has been carried out at Lake Baikal for more than ten years, shallow bays that comprise a significant part of the lake’s area have been neglected, and this gene has not previously been studied in the bacterial fraction. Phage communities were probed using amplicon sequencing methods targeting the gene of major capsid protein (g23) and compared phylogenetically across sample locations and with sequences previously retrieved from non-bacterial fractions (<0.2 um) and biofilms (non-fractionated). In this study, we examined six water samples, in which 24 to 74 viral OTUs were obtained. The sequences from shallow bays largely differed from those in the pelagic and coastal samples and formed individual subcluster in the UPGMA tree that was obtained from the comparison of phylogenetic distances of g23 sequence sets from various ecosystems, reflecting differences in viral communities depending on the productivity of various sites of Lake Baikal. According to the RefSeq database, from 58.3 to 73% of sequences of each sample had cultivated closest relatives belonging to cyanophages. In this study, for phylogenetic analysis, we chose the closest relatives not only from the RefSeq and GenBank NR databases but also from two marine and one freshwater viromes: eutrophic Osaka Bay (Japan), oligotrophic area of the Pacific Ocean (Station ALOHA) and mesotrophic and ancient Lake Biwa (Japan), which allowed us to more fully compare the diversity of marine and freshwater phages. The identity with marine sequences at the amino acid level ranged from 35 to 80%, and with the sequences from the viral fraction and bacterial one from Lake Biwa—from 35.3 to 98% and from 33.9 to 89.1%, respectively. Therefore, the sequences from marine viromes had a greater difference than those from freshwater viromes, which may indicate a close relationship between freshwater viruses and differences from marine viruses.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1202
Author(s):  
Swapnil Ganesh Sanmukh ◽  
Nilton J. Santos ◽  
Caroline Nascimento Barquilha ◽  
Sérgio Alexandre Alcantara dos Santos ◽  
Bruno Oliveira Silva Duran ◽  
...  

The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.


Author(s):  
Junhua Dong ◽  
Cen Chen ◽  
Yuepeng Liu ◽  
Jingen Zhu ◽  
Mengling Li ◽  
...  

Author(s):  
Kyongok Kang ◽  
Yue Ma ◽  
Koichiro Sadakane

AbstractBacteriophages with long DNA genomes are of interest due to their diverse mutations dependent on environmental factors. By lowering the ionic strength of a hydrophobic (PPh4Cl) antagonistic salt (at 1 mM), single long T4 DNA strand fluctuations were clearly observed, while condensed states of T4 DNA globules were formed above 5–10 mM salt. These long DNA strands were treated with fluorescently labeled probes, for which photo bleaching is often unavoidable over a short time of measurement. In addition, long (few tens of $$\upmu m$$ μ m ) length scales are required to have larger fields of view for better sampling, with shorter temporal resolutions. Thus, an optimization between length and time is crucial to obtain useful information. To facilitate the challenge of detecting large biomacromolecules, we here introduce an effective method of live image data analysis for direct visualization and quantification of local thermal fluctuations. The motions of various conformations for the motile long DNA strands were examined for the single- and multi-T4 DNA strands. We find that the unique correlation functions exhibit a relatively high-frequency oscillatory behavior superimposed on the overall slower decay of the correlation function with a splitting of amplitudes deriving from local activities of the long DNA strands. This work shows not only the usefulness of an image–time correlation for analyzing large biomacromolecules, but also provides insight into the effects of a hydrophobic antagonistic salt on active T4 bacteriophage long DNA strands, including thermal translocations in their electrostatic interactions.


Genetics ◽  
2021 ◽  
Author(s):  
Eleanor A Mathews ◽  
Dave Stroud ◽  
Gregory P Mullen ◽  
Gavriil Gavriilidis ◽  
Janet S Duerr ◽  
...  

Abstract A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality (like erd-2.1(RNAi); erd-2.2(RNAi)), indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Subu Subramanian ◽  
Kent Gorday ◽  
Kendra Marcus ◽  
Matthew R Orellana ◽  
Peter Ren ◽  
...  

Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.


2021 ◽  
Vol 8 (3) ◽  
pp. 69-72
Author(s):  
Francis J. Santoriello ◽  
Stefan Pukatzki

Vibrio cholerae, the causative agent of the diarrheal disease cholera, is a microbe capable of inhabiting two different ecosystems: chitinous surfaces in brackish, estuarine waters and the epithelial lining of the human gastrointestinal tract. V. cholerae defends against competitive microorganisms with a contact-dependent, contractile killing machine called the type VI secretion system (T6SS) in each of these niches. The T6SS resembles an inverted T4 bacteriophage tail and is used to deliver toxic effector proteins into neighboring cells. Pandemic strains of V. cholerae encode a unique set of T6SS effector proteins, which may play a role in pathogenesis or pandemic spread. In our recent study (Santoriello et al. (2020), Nat Commun, doi: 10.1038/s41467-020-20012-7), using genomic and molecular biology tools, we demonstrated that the T6SS island Auxiliary Cluster 3 (Aux3) is unique to pandemic strains of V. cholerae. We went on to show that Aux3 is related to a phage-like element circulating in environmental V. cholerae strains and that two genetic domestication events formed the pandemic Aux3 cluster during the evolution of the pandemic clone. Our findings support two main conclusions: (1) Aux3 evolution from phage-like element to T6SS cluster offers a snapshot of phage domestication in early T6SS evolution and (2) chromosomal maintenance of Aux3 was advantageous to the common ancestor of V. cholerae pandemic strains.


2021 ◽  
Vol 120 (3) ◽  
pp. 36a
Author(s):  
Jennifer P. West ◽  
Revathy Ramachandran ◽  
Emilios K. Dimitriadis ◽  
Deborah M. Hinton
Keyword(s):  

2021 ◽  
Author(s):  
Subu Subramanian ◽  
Kent Gorday ◽  
Kendra Marcus ◽  
Matthew R. Orellana ◽  
Peter Ren ◽  
...  

ABSTRACTClamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.


2021 ◽  
Vol 265 ◽  
pp. 04009
Author(s):  
Alexandra N. Karmanova ◽  
Yinhua Lu ◽  
Andrei A. Zimin

Compost is a promising source of thermotolerant enzymes for their application in biotechnology. Homologues of bacteriophage T4 DNA glycosylase can find their application in pharmaceuticals and perfumery. Five homologues of glycosylase of pyrimidine dimers of bacteriophage T4, a product of the denV gene, were found by comparing using the DELTA-BLAST algorithm with the compost metagenome proteins. Phylogenetic analysis of the found sequences of enzyme homologues was carried out using the Maximum Likelihood algorithm in the MegaX software package. Thus, an interesting spectrum of promising proteins, homologues of the repair enzyme, DNA glycosylase of pyrimidine dimers of bacteriophage T4, was found. After structural modeling, they can be tested for their thermal stability and tested as a basis for therapeutic and prophylactic drugs.


Sign in / Sign up

Export Citation Format

Share Document