scholarly journals Mutational analysis of the beta-type platelet-derived growth factor receptor defines the site of interaction with the bovine papillomavirus type 1 E5 transforming protein.

1995 ◽  
Vol 69 (10) ◽  
pp. 6507-6517 ◽  
Author(s):  
A Staebler ◽  
J H Pierce ◽  
S Brazinski ◽  
M A Heidaran ◽  
W Li ◽  
...  
1993 ◽  
Vol 13 (7) ◽  
pp. 4137-4145 ◽  
Author(s):  
L A Nilson ◽  
D DiMaio

We showed previously that the beta receptor for platelet-derived growth factor (PDGF) is constitutively activated in fibroblasts transformed by the 44-amino-acid bovine papillomavirus type 1 (BPV) E5 protein and that the E5 protein and the PDGF receptor exist in a stable complex in E5-transformed fibroblasts. On the basis of these results, we proposed that activation of the PDGF receptor by the BPV E5 protein generates a sustained proliferative signal, resulting in fibroblast transformation. In this study, we used a gene transfer approach to provide functional evidence that the PDGF receptor can mediate transformation by the E5 protein. We show that normal mouse mammary gland (NMuMG) cells, a murine mammary epithelial cell line that does not express PDGF receptors, are not susceptible to transformation by the E5 protein. Coexpression of the PDGF beta receptor and E5 genes in these cells results in markedly increased tyrosine phosphorylation of an immature PDGF receptor species and the formation of a stable complex between the E5 protein and this immature PDGF receptor form. Importantly, introduction of the PDGF receptor gene into NMuMG cells renders them highly susceptible to E5-mediated tumorigenic transformation. In contrast, the E5 protein does not induce transformation via the endogenous epidermal growth factor receptor pathway in these cells. These results demonstrate that the PDGF receptor, a cellular protein with a well-characterized role in the positive control of cell proliferation, can mediate transformation by a DNA virus transforming protein.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amin Sherafat ◽  
Friederike Pfeiffer ◽  
Alexander M. Reiss ◽  
William M. Wood ◽  
Akiko Nishiyama

AbstractNerve-glia (NG2) glia or oligodendrocyte precursor cells (OPCs) are distributed throughout the gray and white matter and generate myelinating cells. OPCs in white matter proliferate more than those in gray matter in response to platelet-derived growth factor AA (PDGF AA), despite similar levels of its alpha receptor (PDGFRα) on their surface. Here we show that the type 1 integral membrane protein neuropilin-1 (Nrp1) is expressed not on OPCs but on amoeboid and activated microglia in white but not gray matter in an age- and activity-dependent manner. Microglia-specific deletion of Nrp1 compromised developmental OPC proliferation in white matter as well as OPC expansion and subsequent myelin repair after acute demyelination. Exogenous Nrp1 increased PDGF AA-induced OPC proliferation and PDGFRα phosphorylation on dissociated OPCs, most prominently in the presence of suboptimum concentrations of PDGF AA. These findings uncover a mechanism of regulating oligodendrocyte lineage cell density that involves trans-activation of PDGFRα on OPCs via Nrp1 expressed by adjacent microglia.


1993 ◽  
Vol 13 (7) ◽  
pp. 4137-4145
Author(s):  
L A Nilson ◽  
D DiMaio

We showed previously that the beta receptor for platelet-derived growth factor (PDGF) is constitutively activated in fibroblasts transformed by the 44-amino-acid bovine papillomavirus type 1 (BPV) E5 protein and that the E5 protein and the PDGF receptor exist in a stable complex in E5-transformed fibroblasts. On the basis of these results, we proposed that activation of the PDGF receptor by the BPV E5 protein generates a sustained proliferative signal, resulting in fibroblast transformation. In this study, we used a gene transfer approach to provide functional evidence that the PDGF receptor can mediate transformation by the E5 protein. We show that normal mouse mammary gland (NMuMG) cells, a murine mammary epithelial cell line that does not express PDGF receptors, are not susceptible to transformation by the E5 protein. Coexpression of the PDGF beta receptor and E5 genes in these cells results in markedly increased tyrosine phosphorylation of an immature PDGF receptor species and the formation of a stable complex between the E5 protein and this immature PDGF receptor form. Importantly, introduction of the PDGF receptor gene into NMuMG cells renders them highly susceptible to E5-mediated tumorigenic transformation. In contrast, the E5 protein does not induce transformation via the endogenous epidermal growth factor receptor pathway in these cells. These results demonstrate that the PDGF receptor, a cellular protein with a well-characterized role in the positive control of cell proliferation, can mediate transformation by a DNA virus transforming protein.


Sign in / Sign up

Export Citation Format

Share Document