beta receptor
Recently Published Documents


TOTAL DOCUMENTS

833
(FIVE YEARS 64)

H-INDEX

71
(FIVE YEARS 2)

2021 ◽  
Vol 71 (6) ◽  
pp. 2091-94
Author(s):  
Ambreen Javed ◽  
Gulshan Ara Trali ◽  
Hassan Burair Abbas ◽  
Alia Sadiq

Objective: To predict the tertiary structure of human interferon alpha/beta receptor 2 protein. Study Design: Structure prediction by using bio informatics tools. Place and Duration of Study: Department of Biochemistry, Swat Medical College (STMC), Saidu Shareef, Swat, Pakistan, from Aug 2019 to Dec 2019. Methodology: All protein sequences of human interferon alpha/beta receptor 2 (isoforma, b and c) (IFNAR-2) were retrieved through the BLAST search (The Basic Local Alignment Search Tool) from available databases ‘NCBI’ (National Centre for Biotechnology Information) and ‘Uni Prot KB’ (The Universal Protein Resource). Sequence alignment was conducted by using Clustal Omega, to get the consensus sequence for IFNAR-2 protein. Consensus protein sequence of human IFNAR-2 was used for the prediction of the three-dimensional structure by employing Swiss-Model Server. Moreover, subcellular localization analysis was also performed by using CELLO2GO program. Results: Structural model of human IFNAR-2 protein was predicted and evaluated by Ramachandran dimension. Cellular localization of tertiary topological domains of the predicted models were revealed probability of localization of IFNAR-2 protein (isoform a, b & c) is highest in the plasma membrane due to the presence of the transmembrane alpha helical regions. Conclusion: This study predicted the tertiary structural dimensions of human IFNAR-2 protein, including the specific topological domains that contribute towards the subcellular compartmentalization and functional characteristics.


2021 ◽  
Author(s):  
Shaghayegh Khanmohammadi ◽  
Nima Rezaei ◽  
Mehdi Khazaei ◽  
Afshin Shirkani

Abstract Background: Interferons play a crucial role in antiviral immunity. Genetic defects in interferon receptors (IFNRs) can lead to the development of life-threatening forms of infectious diseases.Case presentation: A thirteen-year-old boy with a novel mutation in interferon alpha/beta receptor subunit 1 (IFNAR1)(c.674-2A>G) was diagnosed with COVID-19. He had cold symptoms and a high-grade fever at the time of admission. He was admitted to the pediatric intensive care unit after showing no response to favipiravir. High-resolution computed tomography (HRCT) scanning revealed lung involvement of 70% with extensive areas of consolidation in both lungs. Antibiotics, interferon gamma (IFN-γ), remdesivir, methylprednisolone pulse, and other medications were started in the patient. However, remdesivir and methylprednisolone pulse were discontinued after the occurrence of hypertension and bradycardia in the patient. His general condition improved, and a few days later was discharged from the hospital.Conclusion: We reported a COVID-19 patient who had a novel mutation in IFNAR1 and was treated with IFN-γ. Our findings and approach to managing this COVID-19 patient suggest that IFN-γ therapy could be an appropriate choice to treat patients with defects in IFN-α/β signaling pathways.


2021 ◽  
Vol 22 (15) ◽  
pp. 8125
Author(s):  
Hsin-Han Yang ◽  
Jen-Wei Liu ◽  
Jui-Hao Lee ◽  
Horng-Jyh Harn ◽  
Tzyy-Wen Chiou

Despite the improved overall survival rates in most cancers, pancreatic cancer remains one of the deadliest cancers in this decade. The rigid microenvironment, which majorly comprises cancer-associated fibroblasts (CAFs), plays an important role in the obstruction of pancreatic cancer therapy. To overcome this predicament, the signaling of receptor tyrosine kinases (RTKs) and TGF beta receptor (TGFβR) in both pancreatic cancer cell and supporting CAF should be considered as the therapeutic target. The activation of receptors has been reported to be aberrant to cell cycle regulation, and signal transduction pathways, such as growth-factor induced proliferation, and can also influence the apoptotic sensitivity of tumor cells. In this article, the regulation of RTKs/TGFβR between pancreatic ductal adenocarcinoma (PDAC) and CAFs, as well as the RTKs/TGFβR inhibitor-based clinical trials on pancreatic cancer are reviewed.


Author(s):  
You Yu ◽  
Xiao Lei

Circular RNAs (circRNAs) are implicated in various human cancers, including colorectal cancer (CRC). The objective of this study was to investigate the function and regulatory mechanism of a novel circRNA, circFAM120B, in CRC development. The expression of circFAM120B, miR-645 and TGF-beta receptor II (TGFBR2) mRNA was detected by quantitative real-time polymerase chain reaction. Cellular biological functions, including cell proliferation, migration/invasion, and glycolysis metabolism, were assessed using CCK-8 assay, colony formation assay, transwell assay, and glycolysis stress test, respectively. Glycolysis progression was also monitored by lactate production and glucose consumption. The expression of glycolysis-related markers and TGFBR2 at the protein level was detected by western blot. The interaction between miR-645 and circFAM120B or TGFBR2 was predicted by bioinformatics analysis and verified by pull-down assay, dual-luciferase reporter assay and RIP assay. In vivo animal experiments were performed to further explore the function of circFAM120B. The expression of circFAM120B was decreased in CRC tissues and cells. CircFAM120B overexpression blocked CRC cell proliferation, migration/invasion, and glycolysis metabolism. MiR-645 was a target of circFAM120B, and miR-645 restoration reversed the effects of circFAM120B overexpression. In addition, TGFBR2 was a target of miR-645, and miR-645 inhibition-suppressed CRC cell proliferation, migration/invasion and glycolysis were restored by TGFBR2 knockdown. Moreover, circFAM120B activated the expression of TGFBR2 by targeting miR-645. TGFBR2 also blocked tumor growth in vivo by targeting the miR-645/TGFBR2 axis. CircFAM120B inhibited CRC progression partly by mediating the miR-645/TGFBR2 network, which explained the potential mechanism of circFAM120B function in CRC.


Sign in / Sign up

Export Citation Format

Share Document