pdgf receptor
Recently Published Documents


TOTAL DOCUMENTS

486
(FIVE YEARS 13)

H-INDEX

75
(FIVE YEARS 2)

2021 ◽  
Vol 43 (3) ◽  
pp. 1726-1740
Author(s):  
Mayu Imamura ◽  
Tiantian Li ◽  
Chunning Li ◽  
Masayoshi Fujisawa ◽  
Naofumi Mukaida ◽  
...  

The chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) is shown to promote the progression of breast cancer. We previously identified cancer cell-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential regulator of MCP-1 production in the murine 4T1 breast cancer, but it played a minimum role in overall MCP-1 production. Here, we evaluated the crosstalk between 4T1 cells and fibroblasts. When fibroblasts were co-cultured with 4T1 cells or stimulated with the culture supernatants of 4T1 cells (4T1-sup), MCP-1 production by fibroblasts markedly increased. 4T1 cells expressed mRNA for platelet-derived growth factor (PDGF)-a, b and c, and the PDGF receptor inhibitor crenolanib almost completely inhibited 4T1-sup-induced MCP-1 production by fibroblasts. However, PDGF receptor antagonists failed to reduce MCP-1 production in tumor-bearing mice. Histologically, 4T1 tumors contained a small number of αSMA-positive fibroblasts, and Mcp-1 mRNA was mainly associated with macrophages, especially those surrounding necrotic lesions on day 14, by in situ hybridization. Thus, although cancer cells have the capacity to crosstalk with fibroblasts via PDGFs, this crosstalk does not play a major role in MCP-1 production or cancer progression in this model. Unraveling complex crosstalk between cancer cells and stromal cells will help us identify new targets to help treat breast cancer patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1169
Author(s):  
Yan Qi ◽  
Xiuying Liang ◽  
Haijing Guan ◽  
Jingwen Sun ◽  
Wenjuan Yao

RhoGTPase is involved in PDGF-BB-mediated VSMC phenotypic modulation. RhoGDIs are key factors in regulating RhoGTPase activation. In the present study, we investigated the regulatory effect of RhoGDI1 on the activation of RhoGTPase in VSMC transformation and neointima formation. Western blot and co-immunoprecipitation assays showed that the PDGF receptor inhibition by crenolanib promoted RhoGDI1 polyubiquitination and degradation. Inhibition of RhoGDI1 degradation via MG132 reversed the decrease in VSMC phenotypic transformation. In addition, RhoGDI1 knockdown significantly inhibited VSMC phenotypic transformation and neointima formation in vitro and in vivo. These results suggest that PDGF-BB promotes RhoGDI1 stability via the PDGF receptor and induces the VSMC synthetic phenotype. The co-immunoprecipitation assay showed that PDGF-BB enhanced the interaction of RhoGDI1 with Cdc42 and promoted the activation of Cdc42; these enhancements were blocked by crenolanib and RhoGDI1 knockdown. Moreover, RhoGDI1 knockdown and crenolanib pretreatment prevented the localization of Cdc42 to the plasma membrane (PM) to activate and improve the accumulation of Cdc42 on endoplasmic reticulum (ER). Furthermore, Cdc42 inhibition or suppression significantly reduced VSMC phenotypic transformation and neointima formation in vitro and in vivo. This study revealed the novel mechanism by which RhoGDI1 stability promotes the RhoGDI1-Cdc42 interaction and Cdc42 activation, thereby affecting VSMC phenotypic transformation and neointima formation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1174
Author(s):  
Nundehui Díaz-Lezama ◽  
Anne Wolf ◽  
Susanne Koch ◽  
Anna M. Pfaller ◽  
Josef Biber ◽  
...  

Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy—a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.


Author(s):  
Emilie Guérit ◽  
Florence Arts ◽  
Guillaume Dachy ◽  
Boutaina Boulouadnine ◽  
Jean-Baptiste Demoulin
Keyword(s):  

2020 ◽  
Vol 35 (12) ◽  
pp. 2458-2469
Author(s):  
Julia Brun ◽  
Christina Møller Andreasen ◽  
Charlotte Ejersted ◽  
Thomas Levin Andersen ◽  
Joseph Caverzasio ◽  
...  

2020 ◽  
Author(s):  
Romana Moench ◽  
Martin Gasser ◽  
Karol Nawalaniec ◽  
Tanja Grimmig ◽  
Minghua Cao ◽  
...  

Author(s):  
Yan-Qiu Meng ◽  
Ying Zhou ◽  
Qian-Wen Li ◽  
Si-Miao Tong ◽  
Zheng-Yu Kuai ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zin Naing ◽  
Stuart T. Hamilton ◽  
Wendy J. van Zuylen ◽  
Gillian M. Scott ◽  
William D. Rawlinson

2019 ◽  
Vol 317 (3) ◽  
pp. C457-C465 ◽  
Author(s):  
Deng-Fu Guo ◽  
Kamal Rahmouni

Cell motility and migration play critical roles in various physiological processes and disease states. Here, we show that the BBBsome, a macromolecule composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1, is a critical determinant of cell migration and wound healing. Fibroblast cells derived from mice or humans harboring a homozygous missense mutation (BBS1M390R/M390R) that disrupt the BBSome exhibit defects in migration and wound healing. Furthermore, we demonstrate that BBS1M390R/M390R mice have significantly delayed wound closure. In line with this, we provide data suggesting that BBS1M390R/M390R fibroblasts have impaired platelet-derived growth factor-AA (PDGF) receptor-α signaling, a key regulator of directional cell migration acting as a chemoattractant during postnatal migration responses such as wound healing. In addition, we show that BBS1M390R/M390R fibroblasts have upregulated RhoA expression and activity. The relevance of RhoA upregulation is demonstrated by the ability of RhoA-kinase inhibitor Y27632 to partially rescue the migration defect of BBS1M390R/M390R fibroblasts cells. We also show that accumulation of RhoA protein in BBS1M390R/M390R fibroblasts cells is associated with reduction and inactivation of the ubiquitin ligase Cullin-3. Consistent with this, Cullin-3 inhibition with MLN4924 is sufficient to reduce migration of normal fibroblasts. These data implicate the BBSome in cell motility and tissue repair through a mechanism that involves PDGF receptor signaling and Cullin-3-mediated control of RhoA.


Sign in / Sign up

Export Citation Format

Share Document