scholarly journals Mouse Hepatitis Virus 3C-Like Protease Cleaves a 22-Kilodalton Protein from the Open Reading Frame 1a Polyprotein in Virus-Infected Cells and In Vitro

1998 ◽  
Vol 72 (3) ◽  
pp. 2265-2271 ◽  
Author(s):  
Xiao Tao Lu ◽  
Amy C. Sims ◽  
Mark R. Denison

ABSTRACT The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser4014. We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn4208, a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.

2004 ◽  
Vol 78 (11) ◽  
pp. 5957-5965 ◽  
Author(s):  
Mark R. Denison ◽  
Boyd Yount ◽  
Sarah M. Brockway ◽  
Rachel L. Graham ◽  
Amy C. Sims ◽  
...  

ABSTRACT The p28 and p65 proteins of mouse hepatitis virus (MHV) are the most amino-terminal protein domains of the replicase polyprotein. Cleavage between p28 and p65 has been shown to occur in vitro at cleavage site 1 (CS1), 247Gly↓Val248, in the polyprotein. Although critical residues for CS1 cleavage have been mapped in vitro, the requirements for cleavage have not been studied in infected cells. To define the determinants of CS1 cleavage and the role of processing at this site during MHV replication, mutations and deletions were engineered in the replicase polyprotein at CS1. Mutations predicted to allow cleavage at CS1 yielded viable virus that grew to wild-type MHV titers and showed normal expression and processing of p28 and p65. Mutant viruses containing predicted noncleaving mutations or a CS1 deletion were also viable but demonstrated delayed growth kinetics, reduced peak titers, decreased RNA synthesis, and small plaques compared to wild-type controls. No p28 or p65 was detected in cells infected with predicted noncleaving CS1 mutants or the CS1 deletion mutant; however, a new protein of 93 kDa was detected. All introduced mutations and the deletion were retained during repeated virus passages in culture, and no phenotypic reversion was observed. The results of this study demonstrate that cleavage between p28 and p65 at CS1 is not required for MHV replication. However, proteolytic separation of p28 from p65 is necessary for optimal RNA synthesis and virus growth, suggesting important roles for these proteins in the formation or function of viral replication complexes.


2000 ◽  
Vol 74 (7) ◽  
pp. 3379-3387 ◽  
Author(s):  
Anne Gibson Bost ◽  
Robert H. Carnahan ◽  
Xiao Tao Lu ◽  
Mark R. Denison

ABSTRACT The replicase gene (gene 1) of the coronavirus mouse hepatitis virus (MHV) encodes two co-amino-terminal polyproteins presumed to incorporate all the virus-encoded proteins necessary for viral RNA synthesis. The polyproteins are cotranslationally processed by viral proteinases into at least 15 mature proteins, including four predicted cleavage products of less than 25 kDa that together would comprise the final 59 kDa of protein translated from open reading frame 1a. Monospecific antibodies directed against the four distinct domains detected proteins of 10, 12, and 15 kDa (p1a-10, p1a-12, and p1a-15) in MHV-A59-infected DBT cells, in addition to a previously identified 22-kDa protein (p1a-22). When infected cells were probed by immunofluorescence laser confocal microscopy, p1a-10, -22, -12, and -15 were detected in discrete foci that were prominent in the perinuclear region but were widely distributed throughout the cytoplasm as well. Dual-labeling experiments demonstrated colocalization of the majority of p1a-22 in replication complexes with the helicase, nucleocapsid, and 3C-like proteinase, as well as with p1a-10, -12, and -15. p1a-22 was also detected in separate foci adjacent to the replication complexes. The majority of complexes containing the gene 1 proteins were distinct from sites of accumulation of the M assembly protein. However, in perinuclear regions the gene 1 proteins and nucleocapsid were intercalated with sites of M protein localization. These results demonstrate that the complexes known to be involved in RNA synthesis contain multiple gene 1 proteins and are closely associated with structural proteins at presumed sites of virion assembly.


1999 ◽  
Vol 73 (8) ◽  
pp. 6862-6871 ◽  
Author(s):  
Mark R. Denison ◽  
Willy J. M. Spaan ◽  
Yvonne van der Meer ◽  
C. Anne Gibson ◽  
Amy C. Sims ◽  
...  

ABSTRACT The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence laser confocal microscopy, the protein was detected in patterns that varied from punctate perinuclear complexes to large structures that occupied much of the cell cytoplasm. Dual-labeling studies of infected cells for helicase and bromo-UTP-labeled RNA demonstrated that the vast majority of helicase-containing complexes were active in viral RNA synthesis. Dual-labeling studies for helicase and the MHV N protein showed that the two proteins almost completely colocalized, indicating that N was associated with the helicase-containing complexes. This study demonstrates that the putative RNA helicase is closely associated with MHV RNA synthesis and suggests that complexes containing helicase, N, and new viral RNA are the viral replication complexes.


2005 ◽  
Vol 79 (6) ◽  
pp. 3391-3400 ◽  
Author(s):  
Steven M. Sperry ◽  
Lubna Kazi ◽  
Rachel L. Graham ◽  
Ralph S. Baric ◽  
Susan R. Weiss ◽  
...  

ABSTRACT A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The “in vitro-assembled” wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD50, and the “corrected” Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis.


1999 ◽  
Vol 73 (3) ◽  
pp. 2027-2037 ◽  
Author(s):  
Leonie C. van Dinten ◽  
Sietske Rensen ◽  
Alexander E. Gorbalenya ◽  
Eric J. Snijder

ABSTRACT The open reading frame (ORF) 1b-encoded part of the equine arteritis virus (EAV) replicase is expressed by ribosomal frameshifting during genome translation, which results in the production of an ORF1ab fusion protein (345 kDa). Four ORF1b-encoded processing products, nsp9 (p80), nsp10 (p50), nsp11 (p26), and nsp12 (p12), have previously been identified in EAV-infected cells (L. C. van Dinten, A. L. M. Wassenaar, A. E. Gorbalenya, W. J. M. Spaan, and E. J. Snijder, J. Virol. 70:6625–6633, 1996). In the present study, the generation of these four nonstructural proteins was shown to be mediated by the nsp4 serine protease, which is the main viral protease (E. J. Snijder, A. L. M. Wassenaar, L. C. van Dinten, W. J. M. Spaan, and A. E. Gorbalenya, J. Biol. Chem. 271:4864–4871, 1996). Mutagenesis of candidate cleavage sites revealed that Glu-2370/Ser, Gln-2837/Ser, and Glu-3056/Gly are the probable nsp9/10, nsp10/11, and nsp11/12 junctions, respectively. Mutations which abolished ORF1b protein processing were introduced into a recently developed infectious cDNA clone (L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, Proc. Natl. Acad. Sci. USA 94:991–997, 1997). An analysis of these mutants showed that the selective blockage of ORF1b processing affected different stages of EAV reproduction. In particular, the mutant with the nsp10/11 cleavage site mutation Gln-2837→Pro displayed an unusual phenotype, since it was still capable of RNA synthesis but was incapable of producing infectious virus.


1992 ◽  
Vol 12 (2) ◽  
pp. 685-695 ◽  
Author(s):  
V Bours ◽  
P R Burd ◽  
K Brown ◽  
J Villalobos ◽  
S Park ◽  
...  

A Rel-related, mitogen-inducible, kappa B-binding protein has been cloned as an immediate-early activation gene of human peripheral blood T cells. The cDNA has an open reading frame of 900 amino acids capable of encoding a 97-kDa protein. This protein is most similar to the 105-kDa precursor polypeptide of p50-NF-kappa B. Like the 105-kDa precursor, it contains an amino-terminal Rel-related domain of about 300 amino acids and a carboxy-terminal domain containing six full cell cycle or ankyrin repeats. In vitro-translated proteins, truncated downstream of the Rel domain and excluding the repeats, bind kappa B sites. We refer to the kappa B-binding, truncated protein as p50B by analogy with p50-NF-kappa B and to the full-length protein as p97. p50B is able to form heteromeric kappa B-binding complexes with RelB, as well as with p65 and p50, the two subunits of NF-kappa B. Transient-transfection experiments in embryonal carcinoma cells demonstrate a functional cooperation between p50B and RelB or p65 in transactivation of a reporter plasmid dependent on a kappa B site. The data imply the existence of a complex family of NF-kappa B-like transcription factors.


1998 ◽  
Vol 18 (3) ◽  
pp. 1553-1561 ◽  
Author(s):  
Ivaylo P. Ivanov ◽  
Karl Simin ◽  
Anthea Letsou ◽  
John F. Atkins ◽  
Raymond F. Gesteland

ABSTRACT Previously, a Drosophila melanogaster sequence with high homology to the sequence for mammalian antizyme (ornithine decarboxylase antizyme) was reported. The present study shows that homology of this coding sequence to its mammalian antizyme counterpart also extends to a 5′ open reading frame (ORF) which encodes the amino-terminal part of antizyme and overlaps the +1 frame (ORF2) that encodes the carboxy-terminal three-quarters of the protein. Ribosomes shift frame from the 5′ ORF to ORF2 with an efficiency regulated by polyamines. At least in mammals, this is part of an autoregulatory circuit. The shift site and 23 of 25 of the flanking nucleotides which are likely important for efficient frameshifting are identical to their mammalian homologs. In the reverse orientation, within one of the introns of the Drosophila antizyme gene, the gene for snRNP Sm D3 is located. Previously, it was shown that two closely linked P-element transposon insertions caused the gutfeelingphenotype of embryonic lethality and aberrant neuronal and muscle cell differentiation. The present work shows that defects in either snRNP Sm D3 or antizyme, or both, are likely causes of the phenotype.


Sign in / Sign up

Export Citation Format

Share Document