cell periphery
Recently Published Documents


TOTAL DOCUMENTS

786
(FIVE YEARS 141)

H-INDEX

104
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Laura Chalupowicz ◽  
Gideon Mordukhovic ◽  
Nofar Assoline ◽  
Leron Katsir ◽  
Noa Sela ◽  
...  

Gram negative bacteria form spherical blebs on their cell periphery, which later dissociate and released into the surrounding environment. Previous studies have shown that these nano scale structures, derived primarily from the bacterial outer membrane and are termed outer membrane vesicles (OMVs), induce typical immune outputs in both mammals and plants. On the other hand, these same structures have been shown to promote infection and disease. To better understand the broad transcriptional change plants undergo following exposure to OMVs, we treated Arabidopsis thaliana (Arabidopsis) seedlings with OMVs purified from the Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. campestris and performed RNA-seq analysis on OMV- and mock-treated samples at 2, 6 and 24 h post challenge. We found that the most pronounced transcriptional shift occurred in the first two time points, as was reflected by both the number of differentially expressed genes (DEGs) and the average fold change. Gene ontology enrichment analysis revealed that OMVs induce a major transcriptional shift in Arabidopsis towards immune system activation, upregulating a multitude of immune-related pathways including a variety of immune receptors and transcriptional factors. Comparing Arabidopsis response to OMVs and to single purified elicitors, revealed that while OMVs induce a similar suite of genes and pathways as single elicitors, some differential pathways activated by OMVs were detected including response to drug and apoptosis, which may indicate exposure to toxic compounds via OMV. To examine whether the observed transcriptional shift in Arabidopsis leads to an effective immune response, plants were pretreated with OMVs and then inoculated with a bacterial pathogen. OMV-mediated priming led to a significant reduction in bacterial titer in inoculated leaves two days following inoculation. Mutations in the elongation factor receptor (EFR), flagellin receptor (FLS2), or the brassinosteroid-insensitive 1-associated kinase (BAK1) receptor, did not significantly affect OMV-priming. All together these results show that OMV induce a broad transcriptional shift in Arabidopsis leading to upregulation of multiple immune pathways, and that this transcriptional change is reflected in the ability to better resist bacterial infection.


Author(s):  
Nathan Hodson ◽  
Michael Mazzulla ◽  
Maksym N. H. Holowaty ◽  
Dinesh Kumbhare ◽  
Daniel R. Moore

Following anabolic stimuli (mechanical loading and/or amino acid provision) the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or prior to translocation (i.e. in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25g/kg protein, 0.75g/kg carbohydrate) alone (n=7;23±5yrs;76.8±3.6kg;13.6±3.8%BF, FED) or following a whole-body resistance exercise bout (n=7;22±2yrs;78.1±3.6kg;12.2±4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r=0.76, p<0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120min (~54% and ~138% respectively, p<0.05) but was greater in EXFED at both post-stimuli time points (p<0.05). The peripheral-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120min irrespective of stimulus (p=0.006) before returning to PRE at 300min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi-Ting Huang ◽  
Ya-Ting Hsu ◽  
Yih-Fung Chen ◽  
Meng-Ru Shen

Store-operated Ca2+ entry (SOCE) is an essential pathway for Ca2+ signaling, and regulates various vital cellular functions. It is triggered by the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1). Illustration of STIM1 spatiotemporal structure at the nanometer scale during SOCE activation provides structural and functional insights into the fundamental Ca2+ homeostasis. In this study, we used direct stochastic optical reconstruction microscopy (dSTORM) to revisit the dynamic process of the interaction between STIM1, end-binding protein (EB), and microtubules to the ER-plasma membrane. Using dSTORM, we found that“powder-like”STIM1 aggregates into “trabecular-like” architectures toward the cell periphery during SOCE, and that an intact microtubule network and EB1 are essential for STIM1 trafficking. After thapsigargin treatment, STIM1 can interact with EB1 regardless of undergoing aggregation. We generated STIM1 variants adapted from a real-world database and introduced them into SiHa cells to clarify the impact of STIM1 mutations on cancer cell behavior. The p.D76G and p.D84Y variants locating on the Ca2+ binding domain of STIM1 result in inhibition of focal adhesion turnover, Ca2+ influx during SOCE and subsequent cell migration. Inversely, the p.R643C variant on the microtubule interacting domain of STIM1 leads to dissimilar consequence and aggravates cell migration. These findings imply that STIM1 mutational patterns have an impact on cancer metastasis, and therefore could be either a prognostic marker or a novel therapeutic target to inhibit the malignant behavior of STIM1-mediated cancer cells. Altogether, we generated novel insight into the role of STIM1 during SOCE activation, and uncovered the impact of real-world STIM1 variants on cancer cells.


2021 ◽  
Vol 8 (1) ◽  
pp. e000567
Author(s):  
Mustafa H Ghanem ◽  
Andrew J Shih ◽  
Himanshu Vashistha ◽  
Latanya N Coke ◽  
Wentian Li ◽  
...  

ObjectiveWe have investigated the molecular function of SCAMP5, a candidate risk gene for SLE exclusively expressed in plasmacytoid dendritic cells (pDCs) among peripheral leucocytes.MethodsWe tested the independence of the association in SCAMP5 with SLE by performing conditional analyses. We profiled the expression pattern of SCAMP5 among circulating leucocytes at the transcript and protein levels. Using lentiviral vectors, we localised the subcellular distribution of SCAMP5 alongside the interferon secretory pathway. We analysed pDCs for the expression of SCAMP5 and interferon production capacity by SCAMP5 genotype. Finally, we examined pDC-specific SCAMP5 isoforms by total RNAseq analysis and examined for genotype-associated quantitative differences therein.ResultsA conditional analysis revealed evidence of an independent genetic association of SCAMP5 with SLE. Among circulating leucocytes, SCAMP5 is uniquely expressed in pDCs at the transcript and protein levels, with main presence in the Golgi apparatus and minor presence at the cell periphery. In live cells, SCAMP5 displayed dynamic Golgi-cell surface trafficking and localised with the interferon secretory pathway. SCAMP5 did not differ in expression levels in pDCs between genotyped donors; however, a transient interferon secretory defect was noted in pDCs from donors carrying the risk genotype.ConclusionsSCAMP5 constitutes a novel SLE risk gene on the basis of genomic data and expression in a cell type widely implicated in SLE pathogenesis. While we could not find evidence of quantitative expression differences in SCAMP5 between genotyped donors, SCAMP5 remains an attractive gene to explore given its highly restricted expression pattern and colocalisation with interferon secretion.


Author(s):  
Aaron Ramonett ◽  
Eun-A Kwak ◽  
Tasmia Ahmed ◽  
Paola Cruz Flores ◽  
Hannah R. Ortiz ◽  
...  

Drp1 is a key regulator of mitochondrial fission, a large cytoplasmic GTPase recruited to the mitochondrial surface via transmembrane adaptors to initiate scission. While Brownian motion likely accounts for the local interactions between Drp1 and the mitochondrial adaptors, how this essential enzyme is targeted from more distal regions like the cell periphery remains unknown. Based on proteomic interactome screening and cell-based studies, we report that GIPC mediates the actin-based retrograde transport of Drp1 towards the perinuclear mitochondria to enhance fission. Drp1 interacts with GIPC through its atypical C-terminal PDZ-binding motif. Loss of this interaction abrogates Drp1 retrograde transport resulting in cytoplasmic mislocalization and reduced fission despite retaining normal intrinsic GTPase activity. Functionally, we demonstrate that GIPC potentiates the Drp1-driven proliferative and migratory capacity in cancer cells. Together, these findings establish a direct molecular link between altered GIPC expression and Drp1 function in cancer progression and metabolic disorders.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2859
Author(s):  
Younes F. Barooji ◽  
Kasper G. Hvid ◽  
Irene Istúriz Petitjean ◽  
Joshua M. Brickman ◽  
Lene B. Oddershede ◽  
...  

The cellular cytoskeleton provides the cell with a mechanical rigidity that allows mechanical interaction between cells and the extracellular environment. The actin structure plays a key role in mechanical events such as motility or the establishment of cell polarity. From the earliest stages of development, as represented by the ex vivo expansion of naïve embryonic stem cells (ESCs), the critical mechanical role of the actin structure is becoming recognized as a vital cue for correct segregation and lineage control of cells and as a regulatory structure that controls several transcription factors. Naïve ESCs have a characteristic morphology, and the ultrastructure that underlies this condition remains to be further investigated. Here, we investigate the 3D actin cytoskeleton of naïve mouse ESCs using super-resolution optical reconstruction microscopy (STORM). We investigate the morphological, cytoskeletal, and mechanical changes in cells cultured in 2i or Serum/LIF media reflecting, respectively, a homogeneous preimplantation cell state and a state that is closer to embarking on differentiation. STORM imaging showed that the peripheral actin structure undergoes a dramatic change between the two culturing conditions. We also detected micro-rheological differences in the cell periphery between the cells cultured in these two media correlating well with the observed nano-architecture of the ESCs in the two different culture conditions. These results pave the way for linking physical properties and cytoskeletal architecture to cell morphology during early development.


2021 ◽  
Author(s):  
Jason A Iskarpatyoti ◽  
Jianling Shi ◽  
Abhay P S Rathor ◽  
Yuxuan Miao ◽  
Soman N Abraham

Mast cells (MCs) are highly granulated tissue resident hematopoietic cells and because of their capacity to degranulate and release many proinflammatory mediators, they are major effectors of chronic inflammatory disorders including asthma and urticaria. As MCs have the unique capacity to reform their granules following degranulation in vitro, their potential to undergo multiple cycles of degranulation and regranulation in vivo has been linked to their pathogenesis. However, it is not known what factors regulate MC regranulation let alone if MC regranulation occurs in vivo. Here, we report that IgE-sensitized mice can undergo multiple bouts of regranulation, following repeated anaphylactic reactions. mTORC1, a critical nutrient sensor that activates protein and lipid synthesis, was found necessary for MC regranulation. mTORC1 activity in MCs was regulated by a glucose-6-phosphate transporter, Slc37a2, which was found to be necessary for increased glucose-6-phosphate and ATP levels during regranulation, two upstream signals of mTOR. Slc37a2 is highly expressed at the cell periphery early during regranulation where it appears to colocalize with mTORC1. Additionally, this transporter was found to concentrate extracellular metabolites within endosomes which are trafficked directly into nascent granules. Thus, the metabolic switch associated with MC regranulation is mediated by the interactions of a cellular metabolic sensor and a transporter of extracellular metabolites into MC granules.


2021 ◽  
Author(s):  
Elena Kristin Petutschnig ◽  
Julia Anders ◽  
Marnie Stolze ◽  
Christopher Meusel ◽  
Ronja Hacke ◽  
...  

Heterotrimeric G-Proteins are signal transduction complexes comprised of three subunits, Gα, Gβand Gγ, and are involved in many aspects of plant life. The non-canonical Gα subunit XLG2 mediates PAMP-induced ROS generation and immunity downstream of PRRs. A mutant of the chitin receptor component CERK1, cerk1-4, maintains normal chitin signalling capacity, but shows excessive cell death upon infection with powdery mildews. We identified XLG2 mutants as suppressors of the cerk1-4 phenotype. We generated stably transformed Arabidopsis lines expressing Venus-XLG2 and numerous mutated variants. These were analysed by confocal microscopy, Western blotting and pathogen infection. We also crossed cerk1-4 with several mutants involved in immunity and analysed their phenotype. Phosphorylation of XLG2 was investigated by quantitative proteomics. Mutations in XLG2 complex partners AGB1 and AGG1 have a partial cerk1-4 suppressor effect. The cerk1-4 phenotype is independent of NADPH oxidase-generated ROS, BAK1 and SOBIR1, but requires PUB2. XLG2 mediates cerk1-4 cell death at the cell periphery. Integrity of the XLG2 N-terminal domain, but not its phosphorylation, is essential for correct XLG2 localisation and cerk1-4 signalling. Our results suggest that XLG2 transduces signals from an unknown cell surface receptor that activates an apoplastic ROS-independent cell death pathway in Arabidopsis.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Faris Abouakil ◽  
Huicheng Meng ◽  
Marie-Anne Burcklen ◽  
Hervé Rigneault ◽  
Frédéric Galland ◽  
...  

AbstractScanning fluorescence microscopes are now able to image large biological samples at high spatial and temporal resolution. This comes at the expense of an increased light dose which is detrimental to fluorophore stability and cell physiology. To highly reduce the light dose, we designed an adaptive scanning fluorescence microscope with a scanning scheme optimized for the unsupervised imaging of cell sheets, which underly the shape of many embryos and organs. The surface of the tissue is first delineated from the acquisition of a very small subset (~0.1%) of sample space, using a robust estimation strategy. Two alternative scanning strategies are then proposed to image the tissue with an improved photon budget, without loss in resolution. The first strategy consists in scanning only a thin shell around the estimated surface of interest, allowing high reduction of light dose when the tissue is curved. The second strategy applies when structures of interest lie at the cell periphery (e.g. adherens junctions). An iterative approach is then used to propagate scanning along cell contours. We demonstrate the benefit of our approach imaging live epithelia from Drosophila melanogaster. On the examples shown, both approaches yield more than a 20-fold reduction in light dose -and up to more than 80-fold- compared to a full scan of the volume. These smart-scanning strategies can be easily implemented on most scanning fluorescent imaging modality. The dramatic reduction in light exposure of the sample should allow prolonged imaging of the live processes under investigation.


Author(s):  
Sophie Sluysmans ◽  
Isabelle Méan ◽  
Tong Xiao ◽  
Amina Boukhatemi ◽  
Flavio Ferreira ◽  
...  

Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11, which bind to PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations, and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pulldown experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression and cell viability shows that WW-PLEKHAs and PDZD11 are required to maintain low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.


Sign in / Sign up

Export Citation Format

Share Document