scholarly journals The Residues between the Two Transformation Effector Sites of Epstein-Barr Virus Latent Membrane Protein 1 Are Not Critical for B-Lymphocyte Growth Transformation

1999 ◽  
Vol 73 (12) ◽  
pp. 9908-9916 ◽  
Author(s):  
Kenneth M. Izumi ◽  
Ellen Cahir McFarland ◽  
Elisabeth A. Riley ◽  
Danielle Rizzo ◽  
Yuzhi Chen ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-κB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.

2009 ◽  
Vol 100 (5) ◽  
pp. 807-812 ◽  
Author(s):  
Mariko Tomita ◽  
Md. Zahidunnabi Dewan ◽  
Naoki Yamamoto ◽  
Akira Kikuchi ◽  
Naoki Mori

2010 ◽  
Vol 102 (2) ◽  
pp. 500-500
Author(s):  
Mariko Tomita ◽  
Md. Zahidunnabi Dewan ◽  
Naoki Yamamoto ◽  
Akira Kikuchi ◽  
Naoki Mori

Intervirology ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 69-80
Author(s):  
Hai-Yu Wang ◽  
Lingling Sun ◽  
Ping Li ◽  
Wen Liu ◽  
Zhong-Guang Zhang ◽  
...  

<b><i>Objective:</i></b> To investigate the relationship between hematologic tumors and Epstein-Barr virus (EBV)-encoded small noncoding RNA (EBER) variations as well as latent membrane protein 1 (LMP1) variations. <b><i>Methods:</i></b> Patients with leukemia and myelodysplastic syndrome (MDS) were selected as subjects. Genotypes 1/2 and genotypes F/f were analyzed using the nested PCR technology, while EBER and LMP1 subtypes were analyzed by the nested PCR and DNA sequencing. <b><i>Results:</i></b> Type 1 was more dominant than type 2, found in 59 out of 82 (72%) leukemia and in 31 out of 35 (88.6%) MDS, while type F was more prevalent than type f in leukemia (83/85, 97.6%) and MDS (29/31, 93.5%) samples. The distribution of EBV genotypes 1/2 was not significantly different among leukemia, MDS, and healthy donor groups, neither was that of EBV genotypes F/f. EB-6m prototype was the dominant subtype of EBER in leukemia and MDS (73.2% [30/41] and 83.3% [10/12], respectively). The frequency of EB-6m was lower than that of healthy people (96.7%, 89/92), and the difference was significant (<i>p</i> &#x3c; 0.05). China 1 subtype was the dominant subtype of LMP1 in leukemia and MDS (70% [28/40] and 90% [9/10], respectively), and there was no significant difference in the distribution of LMP1 subtypes among the 3 groups (<i>p</i> &#x3e; 0.05). <b><i>Conclusion:</i></b> The distribution of EBV 1/2, F/f, EBER, and LMP1 subtypes in leukemia and MDS was similar to that in the background population in Northern China, which means that these subtypes may be rather region-restricted but not associated with leukemia and MDS pathogenesis.


Cancer ◽  
2010 ◽  
Vol 116 (4) ◽  
pp. 880-887 ◽  
Author(s):  
Jeffrey J. Tarrand ◽  
Michael J. Keating ◽  
Apostolia M. Tsimberidou ◽  
Susan O'Brien ◽  
Rocco P. LaSala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document