scholarly journals Brome Mosaic Virus Polymerase-Like Protein 2a Is Directed to the Endoplasmic Reticulum by Helicase-Like Viral Protein 1a

2000 ◽  
Vol 74 (9) ◽  
pp. 4310-4318 ◽  
Author(s):  
Jianbo Chen ◽  
Paul Ahlquist

ABSTRACT Brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, encodes RNA replication proteins 1a and 2a. 1a contains a C-terminal helicase-like domain and an N-terminal domain implicated in viral RNA capping, and 2a contains a central polymerase-like domain. 1a and 2a colocalize in an endoplasmic reticulum (ER)-associated replication complex that is the site of BMV-specific RNA-dependent RNA synthesis in plant and yeast cells. 1a also localizes to the ER in the absence of 2a or viral RNA replication templates. To investigate the determinants of 2a localization, we fused 2a to the green fluorescent protein (GFP), creating a functional GFP-2a fusion that supported BMV RNA replication and subgenomic mRNA transcription. In the absence of 1a, the GFP-2a fusion was found to be diffused throughout the cytoplasm and in punctate spots not associated with any cytoplasmic organelle so far tested. Formation of these spots was dependent on the C-terminal half of 2a and may represent aggregation of a fraction of 2a. When coexpressed with 1a, GFP-2a colocalized with 1a and ER-resident protein Kar2p in a partial or complete ring around the nucleus. Consistent with these results, cell fractionation showed that both the GFP-2a fusion and wild-type (wt) 2a remained soluble when expressed alone, while in cells coexpressing 1a, most of the GFP-2a fusion or wt 2a cofractionated with 1a in the rapidly sedimenting membrane fraction. Deletion analysis showed that the N-terminal 120-amino-acid segment of 2a, containing one of two 2a regions previously shown to interact with 1a, was necessary and sufficient for 1a-directed localization of GFP-2a derivatives to the ER. These results suggest that 1a, which also interacts independently with the ER and viral RNA, is a key organizer of RNA replication complex assembly.

1999 ◽  
Vol 73 (12) ◽  
pp. 10303-10309 ◽  
Author(s):  
María Restrepo-Hartwig ◽  
Paul Ahlquist

ABSTRACT The universal membrane association of positive-strand RNA virus RNA replication complexes is implicated in their function, but the intracellular membranes used vary among viruses. Brome mosaic virus (BMV) encodes two mutually interacting RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and the polymerase-like 2a protein. In cells from the natural plant hosts of BMV, 1a and 2a colocalize on the endoplasmic reticulum (ER). 1a and 2a also direct BMV RNA replication and subgenomic mRNA synthesis in the yeast Saccharomyces cerevisiae, but whether the distribution of 1a, 2a, and active replication complexes in yeast duplicates that in plant cells has not been determined. For yeast expressing 1a and 2a and replicating BMV genomic RNA3, we used double-label confocal immunofluorescence to define the localization of 1a, 2a, and viral RNA and to explore the determinants of replication complex targeting. As in plant cells, 1a and 2a colocalized on and were retained on the yeast ER, with no detectable accumulation in the Golgi apparatus. 1a and 2a were distributed over most of the ER surface, with strongest accumulation on the perinuclear ER. In vivo labeling with bromo-UTP showed that the sites of 1a and 2a accumulation were the sites of nascent viral RNA synthesis. In situ hybridization showed that completed viral RNA products accumulated predominantly in the immediate vicinity of replication complexes but that some, possibly more mature cells also accumulated substantial viral RNA in the surrounding cytoplasm distal to replication complexes. Additionally, we find that 1a localizes to the ER when expressed in the absence of other viral factors. These results show that BMV RNA replication in yeast duplicates the normal localization of replication complexes, reveal the intracellular distribution of RNA replication products, and show that 1a is at least partly responsible for the ER localization and retention of the RNA replication complex.


2007 ◽  
Vol 81 (18) ◽  
pp. 9759-9768 ◽  
Author(s):  
Carla J. Beckham ◽  
Heather R. Light ◽  
T. Amar Nissan ◽  
Paul Ahlquist ◽  
Roy Parker ◽  
...  

ABSTRACT Cytoplasmic processing bodies are sites where nontranslating mRNAs accumulate for different fates, including decapping and degradation, storage, or returning to translation. Previous work has also shown that the Lsm1-7p complex, Dhh1p, and Pat1p, which are all components of P bodies, are required for translation and subsequent recruitment to replication of the plant virus brome mosaic virus (BMV) genomic RNAs when replication is reproduced in yeast cells. To better understand the role of P bodies in BMV replication, we examined the subcellular locations of BMV RNAs in yeast cells. We observed that BMV genomic RNA2 and RNA3 accumulated in P bodies in a manner dependent on cis-acting RNA replication signals, which also directed nonviral RNAs to P bodies. Furthermore, the viral RNA-dependent RNA polymerase coimmunoprecipitates and shows partial colocalization with the P-body component Lsm1p. These observations suggest that the accumulation of BMV RNAs in P bodies may be an important step in RNA replication complex assembly for BMV, and possibly for other positive-strand RNA viruses.


2003 ◽  
Vol 23 (12) ◽  
pp. 4094-4106 ◽  
Author(s):  
Amine O. Noueiry ◽  
Juana Diez ◽  
Shaun P. Falk ◽  
Jianbo Chen ◽  
Paul Ahlquist

ABSTRACT Previously, we used the ability of the higher eukaryotic positive-strand RNA virus brome mosaic virus (BMV) to replicate in yeast to show that the yeast LSM1 gene is required for recruiting BMV RNA from translation to replication. Here we extend this observation to show that Lsm1p and other components of the Lsm1p-Lsm7p/Pat1p deadenylation-dependent mRNA decapping complex were also required for translating BMV RNAs. Inhibition of BMV RNA translation was selective, with no effect on general cellular translation. We show that viral genomic RNAs suitable for RNA replication were already distinguished from nonreplication templates at translation, well before RNA recruitment to replication. Among mRNA turnover pathways, only factors specific for deadenylated mRNA decapping were required for BMV RNA translation. Dependence on these factors was not only a consequence of the nonpolyadenylated nature of BMV RNAs but also involved the combined effects of the viral 5′ and 3′ noncoding regions and 2a polymerase open reading frame. High-resolution sucrose density gradient analysis showed that, while mutating factors in the Lsm1p-7p/Pat1p complex completely inhibited viral RNA translation, the levels of viral RNA associated with ribosomes were only slightly reduced in mutant yeast. This polysome association was further verified by using a conditional allele of essential translation initiation factor PRT1, which markedly decreased polysome association of viral genomic RNA in the presence or absence of an LSM7 mutation. Together, these results show that a defective Lsm1p-7p/Pat1p complex inhibits BMV RNA translation primarily by stalling or slowing the elongation of ribosomes along the viral open reading frame. Thus, factors in the Lsm1p-7p/Pat1p complex function not only in mRNA decapping but also in translation, and both translation and recruitment of BMV RNAs to viral RNA replication are regulated by a cell pathway that transfers mRNAs from translation to degradation.


2009 ◽  
Vol 83 (7) ◽  
pp. 2976-2988 ◽  
Author(s):  
Priscilla M. Van Wynsberghe ◽  
Paul Ahlquist

ABSTRACT Positive-strand RNA viruses replicate their genomes on intracellular membranes, usually in conjunction with virus-induced membrane rearrangements. For the nodavirus flock house virus (FHV), we recently showed that multifunctional FHV replicase protein A induces viral RNA template recruitment to a membrane-associated state, but the site(s) and function of this recruitment were not determined. By tagging viral RNA with green fluorescent protein, we show here in Drosophila cells that protein A recruits FHV RNA specifically to the outer mitochondrial membrane sites of RNA replication complex formation. Using Drosophila cells and yeast cells, which also support FHV replication, we also defined the cis-acting regions that direct replication and template recruitment for FHV genomic RNA1. RNA1 nucleotides 68 to 205 were required for RNA replication and directed efficient protein A-mediated RNA recruitment in both cell types. RNA secondary structure prediction, structure probing, and phylogenetic comparisons in this region identified two stable, conserved stem-loops with nearly identical loop sequences. Further mutational analysis showed that both stem-loops and certain flanking sequences were required for RNA1 recruitment, negative-strand synthesis, and subsequent positive-strand amplification in yeast and Drosophila cells. Thus, we have shown that protein A recruits RNA1 templates to mitochondria, as expected for RNA replication, and identified a new RNA1 cis element that is necessary and sufficient for RNA1 template recognition and recruitment to these mitochondrial membranes for negative-strand RNA1 synthesis. These results establish RNA recruitment to the sites of replication complex formation as an essential, distinct, and selective early step in nodavirus replication.


2017 ◽  
Vol 114 (7) ◽  
pp. E1282-E1290 ◽  
Author(s):  
Kiwamu Hyodo ◽  
Kenji Hashimoto ◽  
Kazuyuki Kuchitsu ◽  
Nobuhiro Suzuki ◽  
Tetsuro Okuno

As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant–virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication.


2003 ◽  
Vol 77 (4) ◽  
pp. 2568-2577 ◽  
Author(s):  
Jianbo Chen ◽  
Amine Noueiry ◽  
Paul Ahlquist

ABSTRACT The multidomain RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, plays key roles in assembly and function of the viral RNA replication complex. 1a, which encodes RNA capping and helicase-like domains, localizes to endoplasmic reticulum membranes, recruits BMV 2a polymerase and viral RNA templates, and forms membrane-bound, capsid-like spherules in which RNA replication occurs. cis-acting signals necessary and sufficient for RNA recruitment by 1a have been mapped in BMV genomic RNA2 and RNA3. Both signals comprise an extended stem-loop whose apex matches the conserved sequence and structure of the TΨC stem-loop in tRNAs (box B). Mutations show that this box B motif is crucial to 1a responsiveness of wild-type RNA2 and RNA3. We report here that, unexpectedly, some chimeric mRNAs expressing the 2a polymerase open reading frame from RNA2 were recruited by 1a to the replication complex and served as templates for negative-strand RNA synthesis, despite lacking the normally essential, box B-containing 5′ signal. Further studies showed that this template recruitment required high-efficiency translation of the RNA templates. Moreover, multiple small frameshifting insertion or deletion mutations throughout the N-terminal region of the open reading frame inhibited this template recruitment, while an in-frame insertion did not. Providing 2a in trans did not restore template recruitment of RNAs with frameshift mutations. Only those deletions in the N-terminal region of 2a that abolished 2a interaction with 1a abolished template recruitment of the RNA. These and other results indicate that this alternate pathway for 1a-dependent RNA recruitment involves 1a interaction with the translating mRNA via the 1a-interactive N-terminal region of the nascent 2a polypeptide. Interaction with nascent 2a also may be involved in 1a recruitment of 2a polymerase to membranes.


2005 ◽  
Vol 79 (21) ◽  
pp. 13747-13758 ◽  
Author(s):  
Xiaofeng Wang ◽  
Wai-Ming Lee ◽  
Tokiko Watanabe ◽  
Michael Schwartz ◽  
Michael Janda ◽  
...  

ABSTRACT Positive-strand RNA virus RNA replication is invariably membrane associated and frequently involves viral proteins with nucleoside triphosphatase (NTPase)/helicase motifs or activities. Brome mosaic virus (BMV) encodes two RNA replication factors: 1a has a C-terminal NTPase/helicase-like domain, and 2apol has a central polymerase domain. 1a accumulates on endoplasmic reticulum membranes, recruits 2apol, and induces 50- to 70-nm membrane invaginations (spherules) serving as RNA replication compartments. 1a also recruits BMV replication templates such as genomic RNA3. In the absence of 2apol, 1a dramatically stabilizes RNA3 by transferring RNA3 to a membrane-associated, nuclease-resistant state that appears to correspond to the interior of the 1a-induced spherules. Prior results show that the 1a NTPase/helicase-like domain contributes to RNA recruitment. Here, we tested mutations in the conserved helicase motifs of 1a to further define the roles of this domain in RNA template recruitment. All 1a helicase mutations tested showed normal 1a accumulation, localization to perinuclear endoplasmic reticulum membranes, and recruitment of 2apol. Most 1a helicase mutants also supported normal spherule formation. Nevertheless, these mutations severely inhibited RNA replication and 1a-induced stabilization of RNA3 in vivo. For such 1a mutants, the membrane-associated RNA3 pool was both reduced and highly susceptible to added nuclease. Thus, 1a recruitment of viral RNA templates to a membrane-associated, nuclease-resistant state requires additional functions beyond forming spherules and recruiting RNA to membranes, and these functions depend on the 1a helicase motifs. The possibility that, similar to some double-stranded RNA viruses, the 1a NTPase/helicase-like domain may be involved in importing viral RNAs into a preformed replication compartment is discussed.


2001 ◽  
Vol 75 (5) ◽  
pp. 2097-2106 ◽  
Author(s):  
Wai-Ming Lee ◽  
Masayuki Ishikawa ◽  
Paul Ahlquist

ABSTRACT All positive-strand RNA viruses assemble their RNA replication complexes on intracellular membranes. Brome mosaic virus (BMV) replicates its RNA in endoplasmic reticulum (ER)-associated complexes in plant cells and the yeast Saccharomyces cerevisiae. BMV encodes RNA replication factors 1a, with domains implicated in RNA capping and helicase functions, and 2a, with a central polymerase-like domain. Factor 1a interacts independently with the ER membrane, viral RNA templates, and factor 2a to form RNA replication complexes on the perinuclear ER. We show that BMV RNA replication is severely inhibited by a mutation in OLE1, an essential yeast chromosomal gene encoding Δ9 fatty acid desaturase, an integral ER membrane protein and the first enzyme in unsaturated fatty acid synthesis.OLE1 deletion and medium supplementation show that BMV RNA replication requires unsaturated fatty acids, not the Ole1 protein, and that viral RNA replication is much more sensitive than yeast growth to reduced unsaturated fatty acid levels. In ole1 mutant yeast, 1a still becomes membrane associated, recruits 2a to the membrane, and recognizes and stabilizes viral RNA templates normally. However, RNA replication is blocked prior to initiation of negative-strand RNA synthesis. The results show that viral RNA synthesis is highly sensitive to lipid composition and suggest that proper membrane fluidity or plasticity is essential for an early step in RNA replication. The strong unsaturated fatty acid dependence also demonstrates that modulating fatty acid balance can be an effective antiviral strategy.


2001 ◽  
Vol 75 (24) ◽  
pp. 12370-12381 ◽  
Author(s):  
Johan A. den Boon ◽  
Jianbo Chen ◽  
Paul Ahlquist

ABSTRACT RNA replication of all positive-strand RNA viruses is closely associated with intracellular membranes. Brome mosaic virus (BMV) RNA replication occurs on the perinuclear region of the endoplasmic reticulum (ER), both in its natural plant host and in the yeastSaccharomyces cerevisiae. The only viral component in the BMV RNA replication complex that localizes independently to the ER is 1a, a multifunctional protein with an N-terminal RNA capping domain and a C-terminal helicase-like domain. The other viral replication components, the RNA polymerase-like protein 2a and the RNA template, depend on 1a for recruitment to the ER. We show here that, in membrane extracts, 1a is fully susceptible to proteolytic digestion in the absence of detergent and thus, a finding consistent with its roles in RNA replication, is wholly or predominantly on the cytoplasmic face of the ER with no detectable lumenal protrusions. Nevertheless, 1a association with membranes is resistant to high-salt and high-pH treatments that release most peripheral membrane proteins. Membrane flotation gradient analysis of 1a deletion variants and 1a segments fused to green fluorescent protein (GFP) showed that sequences in the N-terminal RNA capping module of 1a mediate membrane association. In particular, a region C-terminal to the core methyltransferase homology was sufficient for high-affinity ER membrane association. Confocal immunofluorescence microscopy showed that even though these determinants mediate ER localization, they fail to localize GFP to the narrow region of the perinuclear ER, where full-length 1a normally resides. Instead, they mediate a more globular or convoluted distribution of ER markers. Thus, additional sequences in 1a that are distinct from the primary membrane association determinants contribute to 1a's normal subcellular distribution, possibly through effects on 1a conformation, orientation, or multimerization on the membrane.


2000 ◽  
Vol 74 (19) ◽  
pp. 8803-8811 ◽  
Author(s):  
Tero Ahola ◽  
Johan A. den Boon ◽  
Paul Ahlquist

ABSTRACT Brome mosaic virus (BMV) encodes two RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and 2a, which is related to polymerases. BMV 1a and 2a can direct virus-specific RNA replication in the yeast Saccharomyces cerevisiae, which reproduces the known features of BMV replication in plant cells. We constructed single amino acid point mutations at the predicted capping and helicase active sites of 1a and analyzed their effects on BMV RNA3 replication in yeast. The helicase mutants showed no function in any assays used: they were strongly defective in template recruitment for RNA replication, as measured by 1a-induced stabilization of RNA3, and they synthesized no detectable negative-strand or subgenomic RNA. Capping domain mutants divided into two groups. The first exhibited increased template recruitment but nevertheless allowed only low levels of negative-strand and subgenomic mRNA synthesis. The second was strongly defective in template recruitment, made very low levels of negative strands, and made no detectable subgenomes. To distinguish between RNA synthesis and capping defects, we deleted chromosomal geneXRN1, encoding the major exonuclease that degrades uncapped mRNAs. XRN1 deletion suppressed the second but not the first group of capping mutants, allowing synthesis and accumulation of large amounts of uncapped subgenomic mRNAs, thus providing direct evidence for the importance of the viral RNA capping function. The helicase and capping enzyme mutants showed no complementation. Instead, at high levels of expression, a helicase mutant dominantly interfered with the function of the wild-type protein. These results are discussed in relation to the interconnected functions required for different steps of positive-strand RNA virus replication.


Sign in / Sign up

Export Citation Format

Share Document