replication complex
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 61)

H-INDEX

64
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Mamata Panigrahi ◽  
Patricia A Thibault ◽  
Joyce A Wilson

ABSTRACT: A liver-specific microRNA, miR-122, anneals to the HCV genomic 5’ terminus and is essential for virus replication in cell culture. However, bicistronic HCV replicons and full length RNAs with specific mutations in the 5’ UTR can replicate, albeit to low levels, without miR-122. In this study, we have identified that HCV RNAs lacking the structural gene region or having EMCV IRES-regulated translation had reduced requirements for miR-122. In addition, we found that a smaller proportion of cells supported miR-122-independent replication when compared a population of cells supporting miR-122-dependent replication, while viral protein levels per positive cell were similar. Further, the proportion of cells supporting miR-122-independent replication increased with the amount of viral RNA delivered, suggesting that establishment of miR-122-independent replication in a cell is affected by amount of viral RNA delivered. HCV RNAs replicating independent of miR-122 were not affected by supplementation with miR-122, suggesting that miR-122 is not essential for maintenance of a miR-122-independent HCV infection. However, miR-122 supplementation had a small positive impact on miR-122-dependent replication suggesting a minor role in enhancing ongoing virus RNA accumulation. We suggest that miR-122 functions primarily to initiate an HCV infection but has a minor influence on its maintenance, and we present a model in which miR-122 is required for replication complex formation at the beginning of an infection, and also supports new replication complex formation during ongoing infection and after infected cell division. IMPORTANCE: The mechanism by which miR-122 promotes the HCV life cycle is not well understood, and a role in directly promoting genome amplification is still debated. In this study, we have shown that miR-122 increases the rate of viral RNA accumulation and promotes the establishment of an HCV infection in a greater number of cells than in the absence of miR-122. However, we also confirm a minor role in promoting ongoing virus replication and propose a role in the initiation of new replication complexes throughout a virus infection. This study has implications for the use of anti-miR-122 as potential HCV therapy.


2021 ◽  
Author(s):  
Mamata Panigrahi ◽  
Patricia A Thibault ◽  
Joyce A Wilson

A liver-specific microRNA, miR-122, anneals to the HCV genomic 5’ terminus and is essential for virus replication in cell culture. However, bicistronic HCV replicons and full length RNAs with specific mutations in the 5’ UTR can replicate, albeit to low levels, without miR-122. In this study, we have identified that HCV RNAs lacking the structural gene region or having EMCV IRES-regulated translation had reduced requirements for miR-122. In addition, we found that a smaller proportion of cells supported miR-122-independent replication when compared a population of cells supporting miR-122-dependent replication, while viral protein levels per positive cell were similar. Further, the proportion of cells supporting miR-122-independent replication increased with the amount of viral RNA delivered, suggesting that establishment of miR-122-independent replication in a cell is affected by amount of viral RNA delivered. HCV RNAs replicating independent of miR-122 were not affected by supplementation with miR-122, suggesting that miR-122 is not essential for maintenance of a miR-122-independent HCV infection. However, miR-122 supplementation had a small positive impact on miR-122-dependent replication suggesting a minor role in enhancing ongoing virus RNA accumulation. We suggest that miR-122 functions primarily to initiate an HCV infection but has a minor influence on its maintenance, and we present a model in which miR-122 is required for replication complex formation at the beginning of an infection, and also supports new replication complex formation during ongoing infection and after infected cell division.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mirjana Persaud ◽  
Anastasia Selyutina ◽  
Cindy Buffone ◽  
Silvana Opp ◽  
Daniel A. Donahue ◽  
...  

AbstractOverexpression of the human Sad-1-Unc-84 homology protein 2 (SUN2) blocks HIV-1 infection in a capsid-dependent manner. In agreement, we showed that overexpression of SUN1 (Sad1 and UNC-84a) also blocks HIV-1 infection in a capsid-dependent manner. SUN2 and the related protein SUN1 are transmembrane proteins located in the inner membrane of the nuclear envelope. The N-terminal domains of SUN1/2 localizes to the nucleoplasm while the C-terminal domains are localized in the nuclear lamina. Because the N-terminal domains of SUN1/2 are located in the nucleoplasm, we hypothesized that SUN1/2 might be interacting with the HIV-1 replication complex in the nucleus leading to HIV-1 inhibition. Our results demonstrated that SUN1/2 interacts with the HIV-1 capsid, and in agreement with our hypothesis, the use of N-terminal deletion mutants showed that SUN1/2 proteins bind to the viral capsid by using its N-terminal domain. SUN1/2 deletion mutants correlated restriction of HIV-1 with capsid binding. Interestingly, the ability of SUN1/2 to restrict HIV-1 also correlated with perinuclear localization of these proteins. In agreement with the notion that SUN proteins interact with the HIV-1 capsid in the nucleus, we found that restriction of HIV-1 by overexpression of SUN proteins do not block the entry of the HIV-1 core into the nucleus. Our results showed that HIV-1 restriction is mediated by the interaction of SUN1/2N-terminal domains with the HIV-1 core in the nuclear compartment.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1798
Author(s):  
Ted Hackstadt ◽  
Abhilash I. Chiramel ◽  
Forrest H. Hoyt ◽  
Brandi N. Williamson ◽  
Cheryl A. Dooley ◽  
...  

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Emily H. Davis ◽  
Andrew S. Beck ◽  
Li Li ◽  
Mellodee M. White ◽  
Marianne Banks Greenberg ◽  
...  

AbstractJapanese encephalitis virus (JEV) is the etiological agent of Japanese encephalitis (JE). The most commonly used vaccine used to prevent JE is the live-attenuated strain SA14-14-2, which was generated by serial passage of the wild-type (WT) JEV strain SA14. Two other vaccine candidates, SA14-5-3 and SA14-2-8 were derived from SA14. Both were shown to be attenuated but lacked sufficient immunogenicity to be considered effective vaccines. To better contrast the SA14-14-2 vaccine with its less-immunogenic counterparts, genetic diversity, ribavirin sensitivity, mouse virulence and mouse immunogenicity of the three vaccines were investigated. Next generation sequencing demonstrated that SA14-14-2 was significantly more diverse than both SA14-5-3 and SA14-2-8, and was slightly less diverse than WT SA14. Notably, WT SA14 had unpredictable levels of diversity across its genome whereas SA14-14-2 is highly diverse, but genetic diversity is not random, rather the virus only tolerates variability at certain residues. Using Ribavirin sensitivity in vitro, it was found that SA14-14-2 has a lower fidelity replication complex compared to SA14-5-3 and SA14-2-8. Mouse virulence studies showed that SA14-2-8 was the most virulent of the three vaccine strains while SA14-14-2 had the most favorable combination of safety (virulence) and immunogenicity for all vaccines tested. SA14-14-2 contains genetic diversity and sensitivity to the antiviral Ribavirin similar to WT parent SA14, and this genetic diversity likely explains the (1) differences in genomic sequences reported for SA14-14-2 and (2) the encoding of major attenuation determinants by the viral E protein.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadezhda E. Vorobyeva ◽  
Maksim Erokhin ◽  
Darya Chetverina ◽  
Alexey N. Krasnov ◽  
Marina Yu. Mazina

AbstractSuppressor of Hairy wing [Su(Hw)] is an insulator protein that participates in regulating chromatin architecture and gene repression in Drosophila. In previous studies we have shown that Su(Hw) is also required for pre-replication complex (pre-RC) recruitment on Su(Hw)-bound sites (SBSs) in Drosophila S2 cells and pupa. Here, we describe the effect of Su(Hw) on developmentally regulated amplification of 66D and 7F Drosophila amplicons in follicle cells (DAFCs), widely used as models in replication studies. We show Su(Hw) binding co-localizes with all known DAFCs in Drosophila ovaries, whereas disruption of Su(Hw) binding to 66D and 7F DAFCs causes a two-fold decrease in the amplification of these loci. The complete loss of Su(Hw) binding to chromatin impairs pre-RC recruitment to all amplification regulatory regions of 66D and 7F loci at early oogenesis (prior to DAFCs amplification). These changes coincide with a considerable Su(Hw)-dependent condensation of chromatin at 66D and 7F loci. Although we observed the Brm, ISWI, Mi-2, and CHD1 chromatin remodelers at SBSs genome wide, their remodeler activity does not appear to be responsible for chromatin decondensation at the 66D and 7F amplification regulatory regions. We have discovered that, in addition to the CBP/Nejire and Chameau histone acetyltransferases, the Gcn5 acetyltransferase binds to 66D and 7F DAFCs at SBSs and this binding is dependent on Su(Hw). We propose that the main function of Su(Hw) in developmental amplification of 66D and 7F DAFCs is to establish a chromatin structure that is permissive to pre-RC recruitment.


Author(s):  
Jia-Ying Lu ◽  
Gary Brewer ◽  
Mei-Ling Li ◽  
Kai-Zhe Lin ◽  
Chien-Chih Huang ◽  
...  

Virus-host interaction plays an important role in viral replication. 3A protein of enterovirus A71 (EV-A71) recruits other viral and host factors to form a replication complex, which is important for viral replication. In this investigation, we utilized immunoprecipitation combined with proteomics approaches to identify 3A-interacting factors.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1487
Author(s):  
Vladimira Horova ◽  
Barbora Landova ◽  
Jan Hodek ◽  
Karel Chalupsky ◽  
Petra Krafcikova ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2’-O MTase has become available; however, its biological characterization within the infected cells remains largely elusive. Here, we report a novel monoclonal antibody directed against the SARS-CoV-2 non-structural protein nsp10, a subunit of both the 2’-O RNA and N7 MTase protein complexes. Using this antibody, we investigated the subcellular localization of the SARS-CoV-2 MTases in cells infected with the SARS-CoV-2.


mSystems ◽  
2021 ◽  
Author(s):  
Rohit Verma ◽  
Sandhini Saha ◽  
Shiv Kumar ◽  
Shailendra Mani ◽  
Tushar Kanti Maiti ◽  
...  

Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5′ and 3′ UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vasiliya Kril ◽  
Olivier Aïqui-Reboul-Paviet ◽  
Laurence Briant ◽  
Ali Amara

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for major outbreaks of disease since 2004 in the Indian Ocean islands, South east Asia, and the Americas. CHIKV causes debilitating musculoskeletal disorders in humans that are characterized by fever, rash, polyarthralgia, and myalgia. The disease is often self-limiting and nonlethal; however, some patients experience atypical or severe clinical manifestations, as well as a chronic rheumatic syndrome. Unfortunately, no efficient antivirals against CHIKV infection are available so far, highlighting the importance of deepening our knowledge of CHIKV host cell interactions and viral replication strategies. In this review, we discuss recent breakthroughs in the molecular mechanisms that regulate CHIKV infection and lay down the foundations to understand viral pathogenesis. We describe the role of the recently identified host factors co-opted by the virus for infection and pathogenesis, and emphasize the importance of CHIKV nonstructural proteins in both replication complex assembly and host immune response evasion. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document