scholarly journals Mutation of Single Hydrophobic Residue I27, L35, F39, L58, L65, L67, or L71 in the N Terminus of VP5 Abolishes Interaction with the Scaffold Protein and Prevents Closure of Herpes Simplex Virus Type 1 Capsid Shells

2003 ◽  
Vol 77 (7) ◽  
pp. 4043-4059 ◽  
Author(s):  
Jewell N. Walters ◽  
Gerry L. Sexton ◽  
J. Michael McCaffery ◽  
Prashant Desai

ABSTRACT Protein-protein interactions drive the assembly of the herpes simplex virus type 1 (HSV-1) capsid. A key interaction occurs between the C-terminal tail of the scaffold protein (pre-22a) and the major capsid protein (VP5). Previously (Z. Hong, M. Beaudet-Miller, J. Durkin, R. Zhang, and A. D. Kwong, J. Virol. 70:533-540, 1996) it was shown that the minimal domain in the scaffold protein necessary for this interaction was composed of a hydrophobic amphipathic helix. The goal of this study was to identify the hydrophobic residues in VP5 important for this bimolecular interaction. Results from the genetic analysis of second-site revertant virus mutants identified the importance of the N terminus of VP5 for the interaction with the scaffold protein. This allowed us to focus our efforts on a small region of this large polypeptide. Twenty-four hydrophobic residues, starting at L23 and ending at F84, were mutated to alanine. All the mutants were first screened for interaction with pre-22a in the yeast two-hybrid assay. From this in vitro assay, seven residues, I27, L35, F39, L58, L65, L67, and L71, that eliminated the interaction when mutated were identified. All 24 mutants were introduced into the virus genome with a genetic marker rescue/marker transfer system. For this system, viruses and cell lines that greatly facilitated the introduction of the mutants into the genome were made. The same seven mutants that abolished interaction of VP5 with pre-22a resulted in an absolute requirement for wild-type VP5 for growth of the viruses. The viruses encoding these mutations in VP5 were capable of forming capsid shells comprised of VP5, VP19C, VP23, and VP26, but the closure of these shells into an icosahedral structure was prevented. Mutation at L75 did not affect the ability of this protein to interact with pre-22a, as judged from the in vitro assay, but this mutation specified a lethal effect for virus growth and abolished the formation of any detectable assembled structure. Thus, it appears that the L75 residue is important for another essential interaction of VP5 with the capsid shell proteins. The congruence of the data from the previous and present studies demonstrates the key roles of two regions in the N terminus of this large protein that are crucial for this bimolecular interaction. Thus, residues I27, L35, and F39 comprise the first subdomain and residues L58, L65, L67 and L71 comprise a second subdomain of VP5. These seven hydrophobic residues are important for the interaction of VP5 with the scaffold protein and consequently the formation of an icosahedral shell structure that encloses the viral genome.

2008 ◽  
Vol 82 (13) ◽  
pp. 6778-6781 ◽  
Author(s):  
Jamie B. Huffman ◽  
William W. Newcomb ◽  
Jay C. Brown ◽  
Fred L. Homa

ABSTRACT The herpes simplex virus type 1 (HSV-1) portal is composed of a dodecamer of UL6 protein molecules whose incorporation into the capsid is mediated by interaction with the HSV-1 UL26.5 scaffold protein. Previous results with an in vitro capsid assembly assay demonstrated that nine amino acids (amino acids 143 to 151) of the UL26.5 protein are required for its interaction with UL6 and for incorporation of the portal complex into capsids. In the present study an HSV-1 mutant, bvFH411, was isolated and contained a deletion that removed the codons for UL26.5 amino acids 143 to 150. The mutant virus failed to produce infectious virus in noncomplementing cells, and only B capsids that contained only minor amounts of portal protein were made. These data corroborate our previous in vitro studies and demonstrate that amino acids 143 to 150 of UL26.5 are required for the formation of portal-containing HSV-1 capsids.


2003 ◽  
Vol 77 (5) ◽  
pp. 3307-3311 ◽  
Author(s):  
Sarah M. Richart ◽  
Scott A. Simpson ◽  
Claude Krummenacher ◽  
J. Charles Whitbeck ◽  
Lewis I. Pizer ◽  
...  

ABSTRACT Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons.


Chemotherapy ◽  
2005 ◽  
Vol 52 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Laura B. Talarico ◽  
Viviana Castilla ◽  
Javier A. Ramirez ◽  
Lydia R. Galagovsky ◽  
Mónica B. Wachsman

1991 ◽  
Vol 65 (12) ◽  
pp. 6989-6993 ◽  
Author(s):  
M D Trousdale ◽  
I Steiner ◽  
J G Spivack ◽  
S L Deshmane ◽  
S M Brown ◽  
...  

Virology ◽  
2001 ◽  
Vol 284 (2) ◽  
pp. 308-316 ◽  
Author(s):  
Susan C. Warner ◽  
Gabriela Chytrova ◽  
Prashant Desai ◽  
Stanley Person

1995 ◽  
Vol 39 (4) ◽  
pp. 846-849 ◽  
Author(s):  
H Aoki ◽  
T Akaike ◽  
K Abe ◽  
M Kuroda ◽  
S Arai ◽  
...  

Oryzacystatin (OC) is the first-described cystatin originating from rice seed; it consists of two molecular species, OC-I and OC-II, which have antiviral action against poliovirus in vitro (H. Kondo, S. Ijiri, K. Abe, H. Maeda, and S. Arai, FEBS Lett. 299:48-50, 1992). In the experiments reported here, we investigated the effects of OC-I and OC-II on the replication of herpes simplex virus type 1 (HSV-1) in vitro and in vivo. HSV-1 was inoculated onto monolayers of monkey kidney epithelial cells (CV-1 cells) at a multiplicity of infection of 0.1 PFU per cell. After adsorption of the virus onto cells, the cultures were incubated in the presence of either OC-I or OC-II in the concentration range of 1.0 to 300 microM, and the supernatant virus yield was quantitated at 24 h. The effective concentration for 90% inhibition of HSV-1 was 14.8 microM, while a cytotoxic effect on CV-1 cells without infection of HSV-1 was not observed below 500 microM OC-I. Therefore, the apparent in vitro chemotherapeutic index was estimated to be more than 33. In the mouse model of HSV-1-induced keratitis and encephalopathy, topical administration of OC-I to the mouse cornea produced a significant decrease in virus production in the cornea (mean virus yields: 3.11 log10 PFU in the treated group and 4.37 log10 PFU in the control group) and significant improvement in survival rates (P = 0.01). The in vivo antiherpetic effect of OC-I was comparable to that of acyclovir, indicating that topical treatment of HSV-1 infection in humans with OC-I might be possible. Our data also suggest the importance of some thiol proteinases, which may be derived from either the host's cells or HSV-1, during the replication process of HSV-1.


Sign in / Sign up

Export Citation Format

Share Document