scaffold proteins
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 75)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tomasz Bieluszewski ◽  
Weronika Sura ◽  
Wojciech Dziegielewski ◽  
Anna Bieluszewska ◽  
Catherine Lachance ◽  
...  

AbstractNucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes.


2021 ◽  
Author(s):  
Nicole Hallahan ◽  
Kylie Deng ◽  
Dillon Jevon ◽  
Krish Kumar ◽  
Jason Tong ◽  
...  

A developing understanding suggests that spatial compartmentalisation of components the glucose stimulus?secretion pathway in pancreatic β cells are critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.


Author(s):  
Xieyi Zhang ◽  
Wangyang Liu ◽  
Kazue Edaki ◽  
Yuta Nakazawa ◽  
Hiroki Kamioka ◽  
...  

Multidrug resistance (MDR) due to enhanced drug efflux activity of tumor cells can severely impact the efficacy of antitumor therapies. We recently showed that increased activity of the efflux transporter P-glycoprotein (P-gp) associated with activation of Snail transcriptional regulators may be mediated mainly by moesin in lung cancer cells. Here, we aimed to systematically evaluate the relationships among mRNA expression levels of efflux transporters (P-gp, breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2)), scaffold proteins (ezrin (Ezr), radixin (Rdx), and moesin (Msn); ERM proteins), and SNAI family members (Snail, Slug, and Smac) in clinical lung cancer and noncancer samples. We found high correlations between relative (cancer/noncancer) mRNA expression levels of Snail and Msn, Msn and P-gp, Slug and MRP2, and Smuc and BCRP. These findings support our previous conclusion that Snail regulates P-gp activity via Msn and further suggest that Slug and Smuc may contribute to the functional regulation of MRP2 and BCRP, respectively, in lung cancer cells. This trial is registered with UMIN000023923.


2021 ◽  
Vol 01 ◽  
Author(s):  
Dong Wang ◽  
Mustafa Tezeren ◽  
Hussein Abou-Hamdan ◽  
Peng Yu ◽  
Canan G. Nebigil ◽  
...  

: Flavaglines, a family of compounds coming from plants used in Traditional Chinese Medicine, exhibit a broad range of biological effects including anticancer, antiviral, cardioprotectant and anti-inflammatory activities. They exert their action by targeting the scaffold proteins called prohitins-1 and-2, and the mRNA helicases eIF4A and DDX3. Flavaglines are densely functionalized cyclopenta[b]benzofurans that have attracted the attention of some of the most eminent organic chemists. This review provides an overview of the biosynthesis, total synthesis and pharmacological activities of flavaglines, which recently culminated with the entrance of a synthetic derivative, Zotatifin, into clinical trials against advanced solid tumors refractory or intolerant to standard treatments.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1706
Author(s):  
Guangbo Yan ◽  
Xia Li ◽  
Jun Yang ◽  
Zhongchen Li ◽  
Jia Hou ◽  
...  

Adenosine triphosphate (ATP) and S-adenosyl-L-methionine (SAM) are important intermediates that are widely present in living organisms. Large-scale preparation and application of ATP or SAM is limited by expensive raw materials. To lower the production costs for ATP/SAM, in this study we used strategies applying engineered multidomain scaffold proteins to synthesize ATP and SAM. An artificial scaffold protein containing CBM3 domain, IM proteins and CL-labeled proteins was assembled to form complex 1 for catalytic reactions to increase ATP production. The ATP synthesis system produced approximately 25 g/L of ATP with approximately 15 g/L of ADP and 5 g/L of AMP using 12.5 g/L of adenosine and 40 g/L of sodium hexametaphosphate reaction at 35 °C and a pH of 8.5 for 6 h. Based on the above ATP synthesis system, two CL-labeled methionine adenosyltransferases (CL9-MAT4 and CL9-MAT5) were applied to construct scaffold protein complex 2 to achieve SAM synthesis. Approximately 25 μg of MAT4 in a reaction system with 0.3 M MgCl2 catalyzed at 20 °C and a pH of 8 catalyzed 0.5 g/L of l-Met to produce approximately 0.9 g/L of SAM. Approximately 25 μg of MAT5 in a reaction system with 0.7 M MgCl2 catalyzed at 35 °C and a pH of 8 catalyzed 0.5 g/L of l-Met to produce approximately 1.2 g/L of SAM. Here, we showed that low-cost substrates can be efficiently converted into high-value additional ATP and SAM via multi-enzyme catalytic reactions by engineered multidomain scaffold proteins.


Oncogene ◽  
2021 ◽  
Author(s):  
Henna Pehkonen ◽  
Ivan de Curtis ◽  
Outi Monni

AbstractLiprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Congyue Annie Peng ◽  
Lukasz Kozubowski ◽  
William R. Marcotte Jr
Keyword(s):  

Development ◽  
2021 ◽  
Author(s):  
Lisa Stenzel ◽  
Alina Schreiner ◽  
Elisa Zuccoli ◽  
Sim Üstüner ◽  
Judith Mehler ◽  
...  

Correct cell division relies on the formation of a bipolar spindle. In animal cells, microtubule nucleation at the spindle poles is facilitated by the pericentriolar material (PCM), which assembles around a pair of centrioles. Although centrioles are essential for PCM assembly, proteins that anchor the PCM to the centrioles are less known. Here we investigate the molecular function of PCMD-1 in bridging the PCM and the centrioles in Caenorhabditis elegans. We demonstrate that the centrosomal recruitment of PCMD-1 is dependent on the outer centriolar protein SAS-7. While the most C-terminal part of PCMD-1 is sufficient to target it to the centrosome, the coiled-coil domain promotes its accumulation by facilitating self-interaction. We reveal that PCMD-1 is interacting with the PCM scaffold protein SPD-5, the mitotic kinase PLK-1 and the centriolar protein SAS-4. Using an ectopic translocation assay, we show that PCMD-1 can selectively recruit downstream PCM scaffold components to an ectopic location in the cell, indicating that PCMD-1 is able to anchor the PCM scaffold proteins at the centrioles. Our work suggests that PCMD-1 is an essential functional bridge between the centrioles and the PCM.


2021 ◽  
Author(s):  
Tomoyuki Ito ◽  
Hafumi Nishi ◽  
Tomoshi Kameda ◽  
Mayu Yoshida ◽  
Reito Fukazawa ◽  
...  

2021 ◽  
Vol 14 (9) ◽  
pp. 864
Author(s):  
Takuro Kobori ◽  
Chihiro Tanaka ◽  
Mayuka Tameishi ◽  
Yoko Urashima ◽  
Takuya Ito ◽  
...  

Programmed cell death ligand-1 (PD-L1), an immune checkpoint protein highly expressed on the cell surface in various cancer cell types, binds to programmed cell death-1 (PD-1), leading to T-cell dysfunction and tumor survival. Despite clinical successes of PD-1/PD-L1 blockade therapies, patients with colorectal cancer (CRC) receive little benefit because most cases respond poorly. Because high PD-L1 expression is associated with immune evasion and poor prognosis in CRC patients, identifying potential modulators for the plasma membrane localization of PD-L1 may represent a novel therapeutic strategy for enhancing the efficacy of PD-1/PD-L1 blockade therapies. Here, we investigated whether PD-L1 expression in human colorectal adenocarcinoma cells (LS180) is affected by ezrin/radixin/moesin (ERM), functioning as scaffold proteins that crosslink plasma membrane proteins with the actin cytoskeleton. We observed colocalization of PD-L1 with all three ERM proteins in the plasma membrane and detected interactions involving PD-L1, the three ERM proteins, and the actin cytoskeleton. Furthermore, gene silencing of ezrin and radixin, but not of moesin, substantially decreased the expression of PD-L1 on the cell surface without affecting its mRNA level. Thus, in LS180 cells, ezrin and radixin may function as scaffold proteins mediating the plasma membrane localization of PD-L1, possibly by post-translational modification.


Sign in / Sign up

Export Citation Format

Share Document